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Abstract

For a long time in the Democratic Republic of Congo, the mining of ores for the production of copper cathodes and
salts of cobalt was mostly conducted in the near-surface oxidized mineralization of the Congo Copperbelt. An important
part of this mineralization is found in geological settings where copper and cobalt mainly exist as mixtures of oxides and
sulfides. With the depletion of surface-rich minerals, mining is taking place at depths where sulfide minerals are
prevalent. Using current technologies, the hydrometallurgical processing of ores with high levels of sulfide minerals
results in poor metal recovery due to their retention in process wastes. These mineral wastes have the propensity to lead
to Acid Mine Drainage (AMD) when exposed to rainfall and atmospheric air. Therefore, major changes in the tech-
nologies implemented will be needed in order to guarantee higher process efficiencies while endeavoring to uphold
environment safeguarding reinforcement. This work aimed to demonstrate the urgency of updating the hydrometal-
lurgical technologies implemented for the processing of copper-cobalt ores with an emphasis put on minimizing the
environmental footprint of process wastes. Four copper-cobalt deposits and downstream hydrometallurgical processes
were surveyed to get a better understanding of how changes in mineralization occurring in the deposits will influence
the processing technologies and practices during the management of process wastes.

Keywords: copper-cobalt ores, mineralization changes, hydrometallurgical processing, technologies update, environ-
ment safeguarding

1. Introduction

F or a long time, in the Copperbelt of the
Congo, the extraction of copper-cobalt ores

was carried out in oxidized deposits close to the
surface. The ore products were mainly supplied to

concentrators or hydrometallurgical plants [1,2].
The concentrators produced commercial-grade-
oxide and sulfide concentrates that were either
processed at local copper hydrometallurgical
plants and smelters, or exported to countries like
Zambia and China for further treatments [3e11].

Received 13 November 2019; revised 24 February 2020; accepted 25 February 2020.
Available online 5 October 2020.

* Corresponding author.
E-mail addresses: lutandulashengo@gmail.com, shengolutandulamichel@yahoo.fr (L.M. Shengo), willykitobo@gmail.com (W.S. Kitobo), meschackime@
gmail.com (M.-B. Kime), pmambwe@cmoctfm.com, p.mambwe@sciencesunilu.ac.cd (M.P. Mambwe), nyembokilwa@gmail.com (T.K. Nyembo).

https://doi.org/10.46873/2300-3960.1009
2300-3960/© Central Mining Institute, Katowice, Poland. This is an open-access article under the CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

R
E
V
IE
W

A
R
T
IC

L
E



Similarly, hydrometallurgical plants processed
the oxidized copper-cobalt ores and produced
both copper cathodes and cobalt salts in the form
of hydroxides or carbonates [3,5,12e15]. Since
2012, the DRC has positioned itself as one of the
major copper producers in Africa [16], with an
annual output of more than one million tons
achieved in 2017 [17]. The mineral export statistics
for 2016 indicate, for example, that the Metal
Mining Group (MMG) and Ruashi Mining, two of
the main copper hydrometallurgical plants oper-
ating in the region of Haut of Katanga and sup-
plied by the Kinsevere and Ruashi mines,
produced an estimated 79,337.283 and 32,139.428
tCu cathodes, and 14,138.412 tCo hydroxides. Boss
Mining, another important copper hydrometal-
lurgical plant operating in the Lualaba region,
located as Haut-Katanga in the former region of
Katanga, produced about 27,601.354 tCu cathodes
and 1,686.727 tCo hydroxides by processing ore
blends from the Menda, Mukondo, Bangwe,
South Kabolela, and Safi open pit mines. It is
important to note here that with as the mining
depth increased, the majority of the mined ore
products contain increasing amounts of sulfide
copper-cobalt bearing minerals, which are poorly
dissolved in the presence of sulfuric acid used as
the conventional leaching solvent at copper hy-
drometallurgical plants [6]. This results in a steep
drop in the recovery of valuable metal and an
increasing presence of sulfur in process wastes
[18].
Among the strategies designed to meet these

challenges, some mining companies are either
considering using blends of ores from different
mineral deposits to supply copper hydrometallur-
gical plants or producing commercial-grade con-
centrates. Such practices cannot be regarded as
sustainable solutions for guaranteeing the country's
growth through the extraction of copper-cobalt
mineral resources. Therefore, any approach for
processing solutions for sustainable mining would
require making drastic changes to the processing
technologies currently implemented if one needs to
improve metal recoveries at copper hydrometallur-
gical plants [19]. This can be done through the
overhaul of the current processing circuits while
using up-to-date leaching techniques to adapt to the
mineralogical variations of the deposits. In addition,
there is a need to focus on strengthening environ-
mental protection by minimizing the footprint of

copper hydrometallurgical plants. This can be ach-
ieved through improved practices in the manage-
ment of process wastes given the increased content
of sulfide minerals, which can cause AMD in the
case of mismanagement [18].
This work seeks to demonstrate the urgency of

updating the technologies currently used in the
copper-cobalt hydrometallurgical plants in the
former region of Katanga in response to observed
mineralogical changes in feed characteristics, with
an emphasis placed on minimizing the environ-
mental footprint of process waste. To this end, the
geological settings of four selected copper-cobalt
ore deposits (Kinsevere, Ruashi, Mukondo, and
Bangwe mines) were described, with a compre-
hensive analysis of their mining exploration data.
This was followed up with the description and
discussion of the downstream hydrometallurgical
processing at four selected mines (Mining Metal
Group, Ruashi Mining, and Boss Mining, and
G�ecamines), as well the extent of the process
wastes’ environmental footprints and the resulting
negative effects, such as the formation and spread
of AMD.

2. The origin and location of the Cu-Coore
deposit in the Congo Copperbelt

The former region of Katanga, recently divided in
four new regions (Haut-Katanga, Lualaba, Haut-
Lomani, and Tanganyika), is located in the south-
eastern region of the DRC, and is home to one of the
world's richest stratiform copper deposits [20e22].
These deposits belong to the Central African Cop-
perbelt that stretches over 700 km from Zambia into
the DRC and comprises stratiform copper-cobalt
mineralization embedded in the Neoproterozoic
rocks of the Katangan Supergroup, consisting of a
succession of carbonate and detrital rocks extending
over about 10 km [23e25]. The Katangan super-
group was deformed during and after the Lufilian
orogeny [26]. It is subdivided into three groups from
bottom to top - Roan, Nguba, and Kundelungu
groups, including the sedimentary breccias
[23,24,27,28]. Most of the well-known copper-cobalt
deposits are found in the Roan Group and Mine
series (e.g. Bangwe, Etoile, Kinsevere, Mukondo and
Ruashi) and Dipeta subgroups (e.g. Shituru)
[27,29e31]. CueAg or CueZnePb deposits also
occur in both the Nguba (e.g. Kamoa, Kipushi) and
Kundelungu (e.g. Dikulushi, Shangoluwe) groups
along the Lufilian arc and its foreland [28,30,32e35].
These mineralizations were precipitated during the
early to late diagenesis stages and the syn-to post-
orogenic stages [20,30,31,36,37]. The dissemination
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and zonation of CueCo primary sulfides (chalco-
pyrite, carrolite, and bornite) within the diverse li-
thology are the main characteristics of the sediment-
hosted strata-bound copper deposits in the Katan-
gan Supergroup [36]. Precipitations of supergene
minerals, such us malachite, chrysocolla, and het-
erogenite, are found in the weathered zone (up to
150m thick) and constitute oxide ore bodies
[32,38e41]. The main mining companies that pro-
cess oxidized ores are Boss (e.g. Bangwe and
Mukondo deposits), MMG (Kinsevere deposit),
Chemaf (Etoile deposit), Ruashi mine (Ruashi de-
posit) and Tenke-Fungurume Mining (Dipeta and
Kwatebala deposits).

3. Mineralogical variations with mining depth
in the Congo Copperbelt

Copper deposits from the Congo Copperbelt
contain cobalt which is themain economic coproduct
[41e51]. The upper and weathered mineralized
zones of the deposits (80e150m) comprise oxide and
carbonate minerals, such as cuprite, chrysocolla,
heterogenite, azurite, malachite, and spherocobaltite
[39]. As the depth increases (50e200m), the deposits
become increasingly rich in secondary copper sulfide
minerals such as chalcocite, covellite, bornite, as well
as chalcopyrite in minor proportions. The secondary
sulfide and oxidized minerals result from the
weathering of the primary copper and cobalt sulfide
minerals of copper and cobalt, chalcopyrite, and
carrollite, which are mainly mined beyond 400m in
the unweathered zones of the ore body [45]. The
oxidized and sulfidemineralized zones are separated
by transition zones with variable thicknesses that
contain mixtures of sulfide and oxidized sulfide and
oxidized copper and cobalt minerals. For example, in
the Kipoi central deposit, located at 45 km from the
City of Likasi (Haut-Katanga), the transition zone has a
thickness of about 50m [52]. The transition ore zone
extends from around 80 to 130m of thickness in the
Safari and Shaba deposits located along the Kapulo
fault in the Katangan foreland [53,54]. In the Tenke
Fungurume Mining mine deposit, the oxidized zone
extends from 80 to 150 m thickness with around 91%
malachite. The thickness of the mixed ore zone un-
derlying the oxidized ore zone (pink cobaltoan dolo-
mite, chrysocolla, and chalcocite) ranges from 50 to 200
m and the sulfide-mineralized zone (chalcocite,
bornite, carrollite, and chalcopyrite) extends up to a
depth of 1900m [39]. Fig. 1 presents the KGHMKimpe
ore deposit in the region of Haut-Katanga [19].
The Kimpe ore deposit is located in the south-

western part of the Haut-Katanga region in
geological settings that are rich in the mixed copper

ores [25,55]. This deposit together with those of
Kinsenda and Lubembe, currently mined by the
Kinsenda Copper Company, belong to the transition
zone separating the Congolese and the Zambian
facies [25,55]. The copper mineralization goes in
with the mining depth with a slope varying between
65 and 70�. The mixed ores are found in the thick-
ness range of 35m and 60m. Beyond the depth of
60m, copper sulfide minerals are prevalent [19].
Changes in mineralization occur naturally in

a deposit with depth. It should be noted that in the
deposits, the copper-cobalt mineralization is strati-
form and composed mainly of disseminated sulfides
in the Roan Supergroup, in the form of lenses or
scales (±10m thick) of the mine series. The Roan is
composed of two distinguished mineralized bodies
separated by the RSC with varying thickness
(0e25m). Changes in the copper mineralization are
related to the origin of the mineralized bodies in the
deposits and their weathering degrees [56,57]. Thus,
vertical zoning can be established from top to bot-
tom in the deposits. This zoning begins with
a totally altered upper zone composed of sterile
rocks. This zone is followed by another containing
heterogenite in a siliceous and clayey gangue, fol-
lowed underneath by a zone containing malachite
and heterogenite in a siliceous and clayey gangue.
Then, comes the transition zone composed of mal-
achite, heterogenite, copper silicates, cobalt car-
bonates, and sulfide minerals (mainly chalcocite)
with a dolomitic gangue. The bottom of the transi-
tion zone consists of a non-altered zone, composed
of copper and cobalt sulfides and located below the
water table [57]. In the former region of Katanga,
most of the copper ore is extracted from the tran-
sition zone. This is confirmed by data from mining
exploration in the central and southern parts of the
Lufilian arc, at the Bangwe and Mukondo mines
(Kakanda) and Kinsevere and Ruashi mines
(Lubumbashi).

3.1. Results of mining exploration conducted in four
selected copper-cobalt deposits

This piece of work specifically investigates the
mineralogical changes with mining depth in CueCo
deposits from the Congo Copperbelt [58]. Summa-
rized the grade and tonnage of some CueCo de-
posits in the Congo Copperbelt. Their results
showed that the Bangwe mine Cu deposit contained
approximately 240,000Mt of ores with 10,320Mt
Cu (4.3%). The Mukondo mine CueCo deposit
contained 36,255,529Mt of ores with about
725,111Mt and 507,577Mt @ 1.4% Co. Similarly, the
Kinsevere CueCo deposit consisted of three mega

98 JOURNAL OF SUSTAINABLE MINING 2020;19:96e114

R
E
V
IE
W

A
R
T
IC

L
E



breccias of the Mines Subgroup, namely Tshifufia-
mashi, Tshifufia and Kinsevere Hill, extending over
~750, 900, and 1100m in length and 150e200m in
thickness. It contained about 50,215,648Mt of ores
with approximately 2,053,315@ 4.09% Cu and 426Mt
of Co. The Ruashi CueCo deposit comprised three
open pits (Ruashi I-III) containing 45,843,595Mt of
ores with 1,286,500@ 2.81% Cu and 112,690@ 0.25%
Co. The Etoile CueCo deposit, located ~2.5 km to
the East of the Ruashi deposit and extended over
~1500m long, contained 29,697,862Mt of ores with
1,283,532@ 4.32% Cu and 92,597@ 0.31% Co.

3.1.1. Mining exploration at the Kinsereve deposit

Table 1 presents mining exploration data from
2015 in the Kinsevere deposit. As can be seen, the
current mining at Kinsevere consists of over three
mega breccias with an anticline mine geo-
morphology and the average starting level of min-
ing is 1,217m. The present level of the mining is at
an average depth of 1,167m. The current extraction
depth is estimated to be 1,131 m in the transition
zone. Mineral exploration at Kinsevere revealed that
copper minerals and waste rock contained about
3.5% and 0.5% of the valuable metal. This clearly
indicates that the Kinsevere mineralization has
changed with depth so the extraction is currently
carried out in the deposit transition zone where
copper and cobalt are present mainly as oxides and
sulfides, as shown by Fig. 2.
At Tshifufia Central mine, the transition zone

separating the oxidized and sulfide zones is located
between levels 1,160 and 1,070 corresponding to
depths of 80 and 130m, respectively. Currently, the
mining of ores is slowed down at MMG Kinsevere
and the hydrometallurgical extraction of copper is
conducted using concentrates from the deposit of

Lupoto where a gravity concentrator (HMS separa-
tion) is operated by IVERLAND, a mining company
owned by the “Soci�et�e Mini�ere du Katanga”
(SOMIKA).

3.1.2. Mining exploration at the Ruashi deposit
Table 2 presents the mining exploration data of

Ruashi deposit conducted in 2015. As shown in
Fig. 3, the deposit comprises three ore bodies with a
reversed syncline mine geomorphology and the
average starting level of the mining is estimated to
be 1,282.65m. The current level of mining is at an
average depth of 1,192.56m with 1,186.67m corre-
sponding to the depth achieved in the transition
zone of the deposit. Mining operations are taking
place in the transition zone wherein copper and
cobalt occur as mixtures of sulfides and oxides due
to changes in the mineralogy of the deposit arising
with the depth. The mined ore is treated by the
hydrometallurgical route using sulfuric acid.
At present the Ruashi mine is undergoing care

and maintenance and the hydrometallurgical plant
is fed with ores from other deposits.

3.1.3. Mining exploration at the Mukondo deposit
Table 3 presents the data from the mining explo-

ration conducted at Mukondo. At the Mukondo
deposit (Fig. 4), mining operations are conducted in
three zones with an average slope of 41� and a
starting level of 1,545m. The current level of mining
is on average 1,330m with 1,320m as the average
depth reached in the transition zone of the deposit
where the main copper and cobalt bearing minerals
exist both as sulfides and as oxides. Currently,
mining is also taking place in the transition zone
and as a result, the ROM ores, formerly composed
of copper and cobalt oxides, used as feed for the
Luita copper hydrometallurgical plant, have

Fig. 1. Ore type zone with the depth observed at the Kimpe Cu ore deposit.
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progressively undergone changes in their mineral-
ogical characteristics. For this reason, the mining
operator opted for the production of commercial
grade sulfide concentrates. At present, the
Mukondo mine and the hydrometallurgical plant of
Luita are not operational. They are both undergoing
care and maintenance.

3.1.4. Mining exploration at the Bangwe deposit
Information related to the mining exploration

conducted at Bangwe using data is provided in
Table 4.

The mine geomorphology at Bangwe (Fig. 5) is
monocline with an average slope of 65� and 1420m
is the starting level of the mining. The present level
of the mining averages 1332.5 m and 1267.5 m was
the depth achieved in the mixed ores of copper and
cobalt. It can be concluded that the mining opera-
tions are conducted in the transition zone of the
deposit composed of mixed ores with copper
occurring both as pseudomalachite and chalcopy-
rite. Going forward, the mining conducted at
Bangwe will lead to the extraction of copper mainly
as chalcopyrite, which is a primary sulfide very

Table 1. Data on the mining exploration at the Kinsevere deposit.

Parameters Kinsevere Deposit

Kinsevere Hills Tshifufia Central Tshifufia Mashi

Mine geomorphology Anticline

Average slope towards the bottom 87� 66� 71�

Mined levels (m) Starting level 1,225.00 1,220.00 1,205.00

Present level 1,222.5 1,110.00 1,167.00

Depth achieved in the mixed ores (m) ±1,115 ±1,120 ±1,120
Mineralized rocks' types All the mine series except for the RSC

Main bearing minerals of Cu and Co Oxides: malachite, cuprite, azurite, chrysocolla, heterogenite;

Sulfides: chalcopyrite, bornite, chalcocite, carrollite.
Copper average grades in ores and barren rocks ±3.5% Cu and ±0.5% Cu

Cu and cobalt metals reserves 1 390 500 tones Cu and 80 000 tones Co

Fig. 2. Geological cross-section at the Kinsevere CueCo ore deposits: evidence of the boundary of the deposit and the ore e type zone Tshifufia Central
Mine Subgroup megabreccias
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difficult to leach under the operating conditions
ordinarily used at copper hydrometallurgical plants.
Consequently, chalcopyrite will remain unleached
in the process wastes making them more reactive
towards water and air resulting in the formation and
spread of AMD. The data from the mining explo-
ration clearly shows changes in mineralization
occurring at Bangwe with depth. It is important
signaling that mining activities are presently shut
down at the open pit of Bangwe.
The analysis of data from the mining exploration

conducted at the Kinsevere and Ruashi mines in the
Haut-Katanga region and Mukondo and Bangwe
mines in the Lualaba region led to the following
findings:

� Ore deposits generally present a slope varying
between 40� and 70�;

� Mixed copper and cobalt ores are located in the
transition zone and in most cases extend beyond
a depth of at least 30m from the surface;

� The amount of sulfide minerals in the ores of a
given deposit increases with depth;

� Mining is increasingly carried out in deeper
layers of deposits where copper-cobalt mineral-
ization is composed of mixed ores.

4. Processing practices at operational copper-
cobalt hydrometallurgical plants

Oxidized ores with malachite and heterogenite as
the main bearing minerals of copper and cobalt are
first subjected to crushing followed by wet grinding
in view obtaining particles with the size smaller
that 75e1120 microns. The pulp obtained is sent for
sulfuric acid leaching in the presence of sodium

Table 2. Data on the mining exploration at the Ruashi deposit.

Elements of interests Ruashi deposit

Orebody 1 Orebody 2 Orebody 3

Mine geomorphology Reversed syncline

Average slope towards the bottom 83� 58� 65�

Mined levels (m) Starting level 1,282.50 1,282.72 1,282.72

Present level 1,210.00 1,182.60 1,185.68

Depth achieved in the mixed ores (m) ±1,185 ±1,190 ±1,185
Mineralized rocks' types RSF, D. Strata, Grew RAT, SDB, BOMZ, SDC and CMN

Main bearing minerals of Cu and Co Oxides: malachite, chrysocolla, azurite, and heterogenite;

Sulfides: chalcopyrite, bornite, and carrollite.

Copper mean grades in ores and the barren rock ±3.5% Cu and 0.3% Cu

Copper and cobalt metals reserves 1,410,889 tones Cu and 124,093 tones Co

Fig. 3. Overview of the Ruashi mine ore deposit.
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metabisulfite or for paddling of sulfur dioxide
which are the reducing agents of the cobaltic cobalt
in heterogenite. This is followed by solid-liquid
separation in thickeners with the overflow made of
high-grade leach liquor directed to clarification
prior to purification by solvent extraction (SX).
During the purification process, copper is selec-
tively recovered and transferred by means of
molecules of oximes, such as LIX 984N or

ACORGA OPT 5510, from the leach liquor to the
organic phase prepared using kerosene. After-
wards, copper is stripped from the organic phase
using the spent from the electrowinning (EW)
section prior to its recuperation in the form of
cathodes. Also, the underflow composed of solids
from the thickener is subjected to washing using
counter current decanters and water recovered
from the tailing pond. This operation yields low-
grade leach liquor that is subjected to purification
through the removal of iron, aluminum, and
manganese prior to the precipitation of cobalt at
approximately pH 8 in the form of hydroxides or
carbonates using magnesia or sodium carbonate,
respectively. The processing practices in copper-
cobalt hydrometallurgical plants in the former re-
gion of Katanga consist of the sulfuric acid leaching
under reducing conditions, the leach liquor puri-
fication by SX, EW of copper and the precipitation
of cobalt as hydroxides or carbonates. The pro-
cessing practices in copper-cobalt hydrometallur-
gical plants in the former Katanga region are
illustrated in Fig. 6.

4.1. Processing practices of ores at the G�ecamines’
hydrometallurgical plants

G�ecamines is the biggest state-owned mining
company in the country and has produced over
450,000 tons of copper between 1970 and 1980. It

Fig. 4. Overview of the Mukondo deposit.

Table 3. Data on the mining exploration conducted at the deposit of
Mukondo

Elements of interest Mukondo deposit

East Centre West

Mine geomorphology Anticline

Average slope towards the bottom 41�

Mined levels (m) Starting level (m) 1 545

Present level (m) 1,325 1,365 1,300

Achieved depth in the mixed CueCo
ores (m)

1,325 1,330 1,305

Mineralized rocks' types Whole mine series(from

RSF to CMN)

Main bearing minerals of copper and
cobalt

Oxides: malachite,

chrysocolla, heterogenite;

Sulfides: chalcopyrite,
bornite, chalcocite,

carrollite.

Average copper grades in ores and
the barren rocks

±2.5% Cu and 0.8% Cu

Metal reserves of Cu and Co 598,210 tones Cu and

427,815 tones Co
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owns the Shituru hydrometallurgical plant which is
the oldest plant in the country and uses technology
form 1920. Operations started in 1929 and the plant
produced annually approximately 30,000 tons of
copper cathodes until 1930. Its hydrometallurgical
circuits were extended many times and overhauled
with the aim of increasing its handling capacity. In
2016, the Shituru plant produced approximately
8,783,181 tons of copper cathodes. This figure is low
compared to the annual production of other local
hydrometallurgical plants such as Metals Mining
Group, Ruashi Mining, Mutanda mine, and Boss
mine with 79,337.282; 32,139.428; 191 255.112; and
27,601.354 tons of copper cathodes, respectively. In
2017, the production of the Shituru plant reached
11,399.998 tons which is low compared to 96,735.933

and 25,507.870 tons of Metals Mining Group and
Ruashi Mining, respectively. The gap in production
between G�ecamines and other local plants is very
concerning and is mainly due to the use of obsolete
technologies, depletion of near-surface oxidized
ores, high levels of sulfide minerals in ore deposits
and the increasing mineralogical variations with the
increased mining depth. The Shituru hydrometal-
lurgical plant has recently been refurbished and the
processing technology updated in order to produce
copper cathodes using a SX-EW process, as have the
majority of plants newly built by the G�ecamines in
partnership with private investors [59]. Fig. 7 pre-
sents a generic flowsheet of the copper-cobalt hy-
drometallurgical processing used for many decades
at G�ecamines.

Fig.5. Overview of Bangwe deposit.

Table 4. Data on the mining exploration at the Bangwe deposit.

Elements of interest Mukondo Deposit

East West

Mine geomorphology Starting level (m) Monocline

Average slope towards the bottom Present level (m) 70� 60�

Mined levels (m) 1 420

1 295 1 370

Achieved depth in the mixed CueCo ores (m) 1 290 1 245

Mineralized rocks' types Mainly SDB and RSC

Main bearing minerals of copper and cobalt Oxides: Pseudomalachite,

Heterogenite;

Sulfides: Chalcopyrite
Average copper grades in ores and the barren rocks ±2.5% Cu and 0.8% Cu

Metal reserves of Cu and Co 190000 tones Cu and 19927 tones Co
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Fig.6. An SX-EW process used by Mutanda Mining in the former region of Katanga.

Fig.7. Simplified flowsheet used at copper hydrometallurgical plants operated by the G�ecamines.
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G�ecamines’ hydrometallurgical plants has used
for many decades out-of-date processing technolo-
gies based on leach liquor purification using the
selective precipitation of impurities. This method
did not enable high purification levels compared to
when solvent extraction is used. In addition,
G�ecamines used large amounts of different chem-
icals in order to further purify the leach solutions
(Fig. 7). These factors negatively impacted the pro-
cess efficiency and economic competitiveness.
G�ecamines produced copper and cobalt metals at its
Shituru plant in the Haut-Katanga region, and co-
balt carbonate salts at its Kolwezi Copper Plant in
the Lualaba region.

4.2. Evolution of practices during the processing of
ores at newly built copper hydrometallurgical
plants

At the new copper hydrometallurgical plants
operated in the former region of Katanga, changes
are being made to the processing circuits through
the adoption of heap leaching which is a method
that is slow in terms of the dissolution kinetics of
the bearing minerals of copper and cobalt, but very
interesting from an economic standpoint. Indeed, it
is not implemented in mechanically or pneumati-
cally agitated reactors requesting electric energy
for their functioning. Instead, the heap leaching
enables the removal from the SX-EW of the solid-
liquid separation stage by thickening after the
leaching of ores as well as the washing of the
leaching residues using counter current decanters.
Additionally, the contact between the ores and the
leaching solvent will be lengthened in order to
raise the concentrations of the valuable metals to a
level enabling the efficient functioning of the
process.
Among copper hydrometallurgical plants where

Heap leaching (Fig. 8) is common practice in Haut-
Katanga, there are those operated by the Soci�et�e
d’Exploitation de Kipoi (SEK) and the Companie
Mini�ere de Luisha (COMILU), both located almost
75 km from Lubumbashi. These copper hydromet-
allurgical plants produce copper cathodes using
leach liquor from the leaching of ores both in the
form of heaps and inside mechanically agitated
tanks. Another copper hydrometallurgical plant
operated on the same basis is the KAI PENG located
along the Kapumpi road leading to the territory of
Kambove, which is a mining city located nearly
30 km from Likasi. G�ecamines is presently also
implementing both the leaching of ores in agitated
tanks and in columns and the leach liquor is sub-
jected to purification by SX, with MEXTRAL 984H

as the extractant, prior to the electrowinning of
copper [59].
In the Lualaba region, Heap leaching of ores is

practiced by the copper hydrometallurgical plant
operated by Mutanda Mining and recently the one
refurbished by the Katanga Copper Corporation
(KCC). It is important to note that these two mining
companies are owned in a partnership between
G�ecamines and Glencore International. Heap
leaching is also practiced at Boss Mining for the
processing of copper oxidized ores.

5. Technical and environmental challengesin
the hydrometallurgical processing of copper-
cobalt ores

The challenges can be understood in terms of the
need to revise the copper-cobalt hydrometallurgi-
cal plants processing circuits and to adopt modern
and environmentally friendly leaching techniques,
such as bioleaching, to adapt to increasing
mineralogical changes. Because of the increasing
changes in mineralogy, the ore feeds to hydro-
metallurgical plants are increasingly composed of
mixed oxide-sulfide copper-cobalt ores. Due to the
current technology being unsuited to this, the
sulfide copper-cobalt-bearing minerals are dis-
carded in the process wastes. The presence of
sulfide minerals in wastes from the hydrometal-
lurgical processing of ores is a clear indication of
the poor dissolution of mixed oxide-sulfide ores
when one uses sulfuric acid as a leaching solvent.
This often results in low recovery rates of copper
and cobalt and high retention of valuable metals in
the process wastes as sulfide minerals can lead to
AMD in the presence of water and air. Figs. 9 and
10 show the efficiency of the process in selected
hydrometallurgical plants.
Boss mining also uses Heap leaching for the

processing of the mixed ores of copper and cobalt,
which leads to process wastes with sulfur-bearing
minerals.
It is clear that the current technologies imple-

mented in hydrometallurgical plants for the pro-
cessing of copper-cobalt ores have been proven to
be ineffective because they cannot adapt to varia-
tions in the feed mineralogical characteristics. This
calls for an urgent overhauling of the processing
circuits at copper hydrometallurgical plants or for
up-to-date leaching techniques during the process-
ing of ores with high sulfide minerals contents in
order to achieve the highest recoveries of copper
and cobalt. Similarly, there is also a need to improve
waste management practices in order to minimize
their environmental footprint.
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Fig. 8. a) Heap leaching of copper ores at the SEK; b) Heap leaching of copper ores at the COMILU; c) Heap leaching of copper ores at the KAI PENG
MINING.
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In the Congolese Copperbelt, a research has been
recently carried out by researchers [60] interested in
the leaching of mixed ores of copper and cobalt.
They succeeded achieving a simultaneous leaching
of copper and cobalt from the ternary system
CuFeS2eFe3O4eCo2O3 without the help of tradi-
tional oxidizing or reducing agents. Their leaching
process is governed by the loop Ferric e Ferrous
ions and constitutes an endeavor to be mentioned
in direction of the improved dissolution of sulfide-
oxide minerals mined in the former region of
Katanga. Indeed, after the achievement of

variations in the amount of acid, iron oxides and the
leaching temperature, the researchers [60] arrived
at the conclusion that iron, dissolved in the leach
liquor, was liberated by both its oxide minerals and
the oxidation of copper from chalcopyrite in the
presence of ferric ions. Moreover, the massive
presence in the solution of ferric ions has favored
both the leaching of chalcopyrite and heterogenite.
The latter mineral, through its dissolution, has
enabled maintaining the loop ferrous-ferric ions
involved in the leaching of oxide-sulfide minerals.
In spite of the fact that the studied leaching system

Fig. 9. Feed, process wastes and PLS characteristics at two copper hydrometallurgical plants.

Fig. 10. Feed, process wastes and PLS characteristics at the Boss Mining.
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[60] enables recovering of 89.93% and 95.72%
respectively for copper and cobalt, it is evident that
its scaling up to an industrial level will require a
great number of experiments to ascertain that it will
perfectly work when applied to the leaching of
mixed ores of copper and cobalt presently mined in
Katanga and used as feed to hydrometallurgical
plants. This leaching technology could enable
recovering more copper and cobalt retained in
process wastes as sulfides and thus, prevent them
from favoring the formation and spreading of ADM
when exposed to water and air.
Among the newly developed leaching techniques,

bioleaching can be considered as the most prom-
ising when it comes to allowing the dissolution of
sulfide minerals by using sulfuric acid as a solvent
with both the lowest requirement in energy and the
smallest environmental footprint when compared to
the pyrometallurgical extraction of metals [61,62].
Bioleaching is already used at an industrial scale in
countries such as Chile, China, and South Africa
where it is enabling the extraction of base metals
from lower-grade ore composed of complex sulfides
[62,63]. In addition, this technique has been suc-
cessfully implemented by researchers [64] who
succeeded to conduct the leaching of a polymetallic
(Copper, cobalt and nickel) concentrate from the
Congolese Copperbelt by means of bacteria. How-
ever, a large number of leaching tests should be
conducted at the laboratory scale to determine the
operating conditions that can ensure the highest
recoveries of valuables metals and this could lead to
the scaling up of process to an industrial level. It
should also be noted that the hydrometallurgical
processing of ores from the former region of
Katanga using bioleaching would require the min-
ing operators to make very large initial investments
for the construction of new plants.
In addition, the bacterial leaching of crushed ores

or concentrates previously stacked in columns,
heaps, or dumps is a slow kinetic process because of
the low growth rate of bacteria [62,65,66]. Therefore,
the new plants must be equipped with large col-
umns or highly aerated stirred tanks to successfully
leach the sulfide minerals and increase copper
concentration in the leach liquors to levels compa-
rable to those obtained during the vat leaching of
oxide minerals [62]. However, after a while, the
bioleaching process will generate acid, which will
result in lower plant operating costs, particularly
when one utilizes leaching less acid-consuming ores
with a siliceous gangue.
In essence, the bioleaching of minerals is carried

out with acidic media using microorganisms con-
sisting of mesophilic bacteria (Acidithiobacillus

ferrooxidans, Acidithiobacillus thiooxidans, Leptospir-
illum ferrooxidans) or thermophilic bacteria (Sulfo-
bacillus thermosulfidooxidans, Sulfobacillus
Acidophilus) [66,67]. Sulfuric acid is the main solvent
used to leach copper oxides (cuprite, malachite, and
azurite) and copper sulfides such as chalcosite
(Cu2S) at the atmospheric pressure. Copper sulfide
minerals such as bornite (Cu5FeS4), covellite (CuS),
and native copper are slowly dissolved under such
conditions. As for chalcopyrite (CuFeS2), it requires
the use of drastic conditions to undergo dissolution
in the presence of an aqueous solution of sulfuric
acid. As a result, the sulfuric leaching of primary
sulfides such as chalcopyrite is well achieved using
bacteria or under oxidizing conditions. Poor disso-
lution, which characterizes chalcopyrite during its
sulfuric acid leaching under atmospheric pressure,
results from the formation of a less reactive layer
made either of Jarosites or sulfur on the mineral
surface [60]. Thus, the leaching of chalcopyrite is
well understood as a two-step process beginning
with the removal of iron from the mineral during
dissolution, leaving either a metastable and less
reactive layer of chalcocite (Cu2S), a Jarosite or sul-
fur on its surface. Subsequently, the mineral disso-
lution begins to release copper, resulting in the
formation of a layer of metal-deficient sulfides ulti-
mately leading to elemental sulfur. The latter is a
hydrophobic chemical species that slows down and
prevents the dissolution of chalcopyrite during
leaching with sulfuric acid.
The sulfuric acid leaching of copper sulfide is

successfully conducted in the presence of iron and
bacteria as catalysts, as shown in Equations (1)e(3):

FeS2þ7O2 þ 2H20/2Fe2þ þ 2S02�4 þ 2H2SO4 ð1Þ

2Fe2þþ1
2
O2 þ SO2�

4 þH2SO4/2Fe3þ þ 3SO2�
4 þH2O

ð2Þ

Cu2Sþ10Fe3þ þ 15SO2�
4 þ 4H2O/2Cu2þ þ 10Fe2þ

þ 12SO2�
4 þ 4H2SO4

ð3Þ
Equations (2) and (3) are related to the production

of ferrous ions and their conversion into the ferric ions
involved in the bioleaching of copper sulfideminerals,
as shown in Fig. 11. The bioleaching of sulfide min-
erals involves two sub-processes comprising the ferric
leaching of pyrite to form ferrous iron and sulfate in
the solution and the bacterial oxidation of ferrous iron
to the ferric form [62,66].
The bacterial action on pyrite can be direct or in-

direct (a) and leads to the production of sulfuric acid
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with the conversion of ferrous ions to ferric ions (b)
that behave as catalysts of the reaction leading to the
dissolution of copper sulfide minerals. Thus, during
the leaching of ores, iron undergoes a locked-cycle
oxidation/reduction process leading to the conver-
sion of ferrous into ferric ions and the inverse, due to
the bacterial action on ferrous ions and the involve-
ment of ferric ions as the oxidizing agents enabling
the dissolution of sulfide minerals [62].
Although, the sulfuric leaching of sulfide minerals

can take place in the presence of iron and oxygen as
oxidizing agents (see reaction (4)), the industrial
practice demonstrates that the leaching velocity is
increased a million times when it is conducted in the
presence of bacteria, such as thiobacillus ferroxidans,
leptosprillum ferroxidans and thiobacillus thiooxidans,
playing the role of catalysts.

Cu2Sþ5
2
O2 þH2SO4/Cu2þ þ SO2�

4 þH2O ð4Þ
These bacteria utilize carbon and sulfur as

sources of energy for their growth and breeding. A
supply in nutrients (ammonium ions and phos-
phates) together with oxygen is required for the best
functioning of the bacterial activity. During the
sulfuric acid leaching of sulfide ores, the bacterial
activity is optimal when one operates under the
following conditions, preferably:

� A medium with a pH between 1 and 6, with 2 as
the optimal value;

� An environment with the temperature ranging
from 5 to 45� C, with 30�C as the optimal value;

� A supply in oxygen through an injection of air in
the heaps of sulfide minerals subjected to
leaching.

However, it is important highlighting that the
bacterial action can be hindered when the reaction
medium contains ions of heavy metals, such as
mercury, owing to their bactericidal properties.

6. Improvement of practices during the
management of process wastes from
hydrometallurgical plants

Sulfuric acid leaching of mixed copper ores gen-
erates different types of process wastes. They consist
mainly of acidic wastewaters and solid residues, as
well as precipitates of impurities. Solid residues are
usually pumped as pulp to tailing ponds to enable
them settling and separating from the water to be
returned back to the leaching stage. Solid residues
may also be washed using the countercurrent de-
canters with the aim of recovering the low-grade
leach liquor prior to vacuum filtration in order to
obtain cakes. Sometimes tailing ponds are not
waterproofed with geomembranes to prevent the
release of pollutants into soil and groundwater. In
addition, stored tailings are exposed to winds and
rainfall, resulting in the release of pollutants to the
environment as airborne particles and as leachate.
With the observed mineralization changes occur-
ring with depth in the majority of copper deposits,
one notes an increase in the amount of sulfide
minerals present in the ROM ores. These changes
lead to variations in the mineralogical characteris-
tics of the process wastes and their biogeochemical
behavior resulting in acidification and AMD as the
outcome of exposure to water and air [68]. A glance
at Fig. 12 which is related to the SEK mine, a mining
company located 75 km from the city of Lubumbashi
in the Haut-Katanga, enables comprehending the

Fig. 11. Bacterial actions during the leaching process of sulfide minerals.
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environmental issues brought about by the weath-
ering of sulfide minerals. Indeed, in the open pit,
one can see acidic solutions and pockets (Grayish
zones) of sulfides together with the presence of
secondary minerals (whitish crusts) on the mine's
flanks. These signs are evidence of the weathering
of sulfide minerals or their alteration in the presence
of air and water, ultimately resulting in AMD
[68,69].
A series of wetting laboratory-scale tests (Fig. 13)

was conducted using waste samples from four
copper hydrometallurgical plants fed by ores from
the deposits of Mukondo, Bangwe, Ruashi and
Tshifufia.
The results given by the first series of tests show

that the process waste samples studied released

water at a neutral pH. During the second series of
tests, a decrease in the pH of the rinsing water was
observed up to 3.1e3.2, a value that corresponded to
the release of acid by reactions involved in the
alteration of the sulfide minerals contained in pro-
cess wastes. During the third series of tests, the pH
of water increased to 3.9. The same trend was
observed for the rest of the samples with pH
increasing to close to 3.5 after the second washing
and rinsing. This variation in the pH reveals a pro-
cess that was consuming acid liberated by the
weathering of sulfide minerals and leading to the
occurrence of secondary minerals of copper and
cobalt. As the number of cycles of washing and
rinsing increased, the acidification process induced
by the reaction of sulfide minerals became impor-
tant so that an acidic pH of between 2 and 3 is
recorded revealing the possibility of the formation
and spreading of the AMD.
AMD is a phenomenon caused by the oxidation of

process wastes containing sulfide minerals or with
high pyrite contents [68,69]. As can be seen from the
reactions in Table 5, AMD occurs due to the release
of sulfuric acid generated by the exposure of the
sulfide minerals to water and air [68e70]. The
oxidation of sulfide minerals can take place either
via the path implicating oxygen or ferric ion, as
indicated below [70]:
The absence of neutralizing compounds in pro-

cess wastes (Table 6) is promoting the setup of
chemical reactions involved in the formation and
spreading of AMD.
Neutralizing compounds are responsible for the

consumption of acid and this phenomenon prevents

Fig. 12. Presence of sulfides and AMD apparition at the SEK mine.

Fig. 13. Water pH versus the number of washing and rinsing.
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the formation and spread of AMD during the stor-
age of process wastes. The same compounds are
also retained through the precipitation of metal ions
contained in the water liberated by the AMD and
this process results in the confinement of the
pollution that can affect water and soil. However,
this is not the case for the majority of process wastes
generated by copper hydrometallurgical plants
operational in the former region of Katanga,
because neutralizing compounds are removed dur-
ing the leaching of ores by sulfuric acid. When
storage areas are not waterproofed or lined, water
and soil pollution associated with alterations of
sulfide minerals occurs due to reactions with water
and air that cannot be avoided.

7. Conclusion

In the former region of Katanga, copper-cobalt
ores from open pit mines revealed a significant
variability of mineralization which deepens with the
depth of mining, with a slope varying between 40
and 70�.Data from the mining exploration collected
at four selected copper deposits showed that mining
is increasingly taking place in the transition zones
which are mainly composed of mixed ores of copper
and cobalt. Therefore, large amounts of valuable
metals as sulfide minerals are found in ores. Sulfide
minerals react poorly to dissolution from sulfuric
leaching technology, which is currently imple-
mented in copper hydrometallurgical plants and,
consequently, the recoveries of copper and cobalt
are barely at a level of 75%. As a result, the content
of copper in process wastes can increase by up to

0.7% due to its retention as residual sulfides that can
cause AMD during storage. It is clear that there is an
urgent need to update the current technologies
implemented at hydrometallurgical plants in former
Katanga and to reinforce the minimization of the
process wastes environmental footprint. To this end,
bioleaching techniques are promising as they quell
these threats and can at the same time help-
enhancing the dissolution of sulfide minerals con-
tained in mixed copper-cobalt ores presently used
as feed to copper hydrometallurgical plants. It is
believed that implementing bioleaching techniques
will increase the recovery of copper beyond 75.0%
and delay AMD forming and propagation through
the removal of sulfur from process wastes before
their storage.
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Table 5. Oxidation paths of sulfide minerals.

Oxygen path
Pyrite: FeS2 þ H2Oþ 7=2O2/Fe2þ þ 2SO2�

4 þ 2Hþ

Chalcopyrite: CuFeS2 þ 2O2/Fe2þ þ Cu2þ þ 2SO2�
4

Sphalerite: ZnSþ 2O2/Zn2þ þ SO2�
4

Galena: PbSþ 2O2/Pb2þ þ SO2�
4

Arsenopyrite: FeAsSþ 3:25O2 þ 1:5H2O/Fe2þ þHAsO2�
4 þ SO2�

4 þ 2Hþ

Ferric iron path

Pyrite: FeS2 þ 14Fe3þ þ 8H2O/15Fe2þ þ 2SO2þ
4 þ 16Hþ

Chalcopyrite: CuFeS2 þ 16Fe3þ þ 8H2O/17Fe2þ þ Cu2þ þ 2SO2�
4 þ 16Hþ

Sphalerite: ZnSþ 8Fe3þ þ 4H2O/8Fe2þ þ Zn2þ þ SO2�
4 þ 8Hþ

Galena: PbSþ 8Fe3þ þ 4H2O/8Fe2þ þ Pb2þ þ SO2�
4 þ 8Hþ

Table 6. Compounds inducing chemical reaction involved in the consumption of acid.

Neutralizing compound Reaction leading to the consumption of acid generated during the oxidation of sulfides

Calcite CaCO3 þ 2Hþ/Ca2þ þ CO2 þH2O
Chlorite ðMg4:5FeII0:2Fe

III
0:2AlÞAlSi3O10ðOHÞ8 þ 16Hþ/4:5Mg2þ þ 0:2Fe3þ þ 2Al3þ þ 3SiO2 þ 12H2O

Plagioclase Na0:75Ca0:25Al1:25Si2:75O8 þ 5Hþ/0:75Naþ þ 0:25Ca2þ þ 1:25Al3þ þ 2:75SiO2 þ 2:5H2O
Potassium feldspar KalSi3O8 þHþ þ 4H2O/Kþ þ 3H4SiO4 þ AlðOHÞ3
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