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Recovery and repurposing of thermal resources in the
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Abstract

The consumption of energy contributes significantly to the overall cost of operations and the environmental impact of
the mining and mineral processing industry. However, despite a few notable exceptions, most of the resulting waste heat
produced is dissipated, without recovery, into the environment. There is also a lot of stored heat in mine water which can
be tapped into long after a mine has closed. There is, therefore, significant opportunity to improve the industry's sus-
tainability through increasing the amount of waste heat recovered and repurposed.

Keywords: energy recovery, mining, environmental sustainability, heat pumps, waste heat

1. Introduction

I ndustry, as a whole, accounts for around one
third of the world's total energy consumption

and about 36% of CO2 emissions [1]. The mining
industry is responsible for 4e7% of the total en-
ergy consumption [2] and despite an increase in
the use of renewable energy, there is still a heavy
reliance on fossil fuels [3]. In Canada, for
example, CO2 emissions released from the min-
ing industry grew from about 22.5Mt in 1990 to
74.5Mt in 2016 [4]. Energy preservation and
management can be accomplished by cutting
down on high energy consuming equipment and
implementing more efficient technologies [5].
Strides are also being made towards improving
energy efficiency through the recovery and reuse
of what is otherwise waste heat - the so called
‘first fuel’ option [6].
It has been estimated that of the total amount of

energy consumed in industrial processes, up to 70%
is lost as waste heat [7], i.e. thermal energy that is

not captured and is rejected into the environment
[8].
Energy usage in mining and mineral processing

operations is dominated by a few major processes,
including ventilation pumping, comminution and
smelting, all of which offer the potential for energy
recovery. Mine ventilation, for example, can account
for up to 40% of a deep underground mine's total
electricity consumption [9], an essential operation to
bring fresh air underground and keep areas cool.
The smelting process is an extractive metallurgy
technique and involves the application of heat to
extract metals from their ores [10]. Pumping,
particularly in large mining sites, uses significant
quantities of energy, which is on average 25%e32%
of total motor energy [11]. Comminution (crushing
and grinding) reduces the size of the ore to allow
further processing to take place. Comminution
contributes to approximately 40% of the total energy
used in mineral processing [12]. Much of the energy
consumed by grinding practices is lost as heat to the
ore, resulting in an energy efficiency process of only
1% [11].
Operations, such as process cooling water and off-

gasses, expel considerable amounts of unrecovered
energy in the form of waste heat [3,8]. Underground
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mining, for example, has several energy intensive
stages, including hauling, ventilation, pumping and
dewatering [11], with little or none of the generated
heat captured. In mineral processing, 20e50% of the
primary energy is lost as waste heat [13]; pp. 47e52).
It is proposed, therefore, that the industry could
significantly benefit from the recovery and repur-
posing of its waste to offset primary energy pur-
chases in order to enhance overall sustainability.
Whilst advancement in technologies and the

improvement of equipment to reach higher effi-
ciencies can limit the release of waste heat and
improve industrial sustainable development,
studies have shown that one of the most effective
ways to improve energy efficiency without the use
of major equipment or facility alterations is through
waste heat recovery [14]. The recycled energy can,
for example, be used to power auxiliary equipment,
generate steam, or deliver space heating and cooling
[14].
In general, waste heat can be classified as either

low or high-grade. High-grade waste heat is at
a temperatures greater than 100 �C, and is often
used to generate steam or it is recycled directly back
into a process [15]. High-grade waste heat can also
be captured and used for power generation by
driving heat engines, such as those that use the
Rankine cycle [8]. Low-grade waste heat is, there-
fore, typically considered to have a temperature
below 100 �C. Temperatures between 70 and 100 �C
may be upgraded by adding energy to raise the

temperature to allow for beneficial repurposing,
such as steam generation [16,17]. However, at tem-
peratures below 70 �C, currently little of this low-
grade waste heat is recovered in the mining
industry.
Table 1 summarizes methods of recovering

various waste heat sources present in the mining
and mineral processing industry, as well as the po-
tential applications for the recovered energy. This
review focuses on these various sources of waste
heat and the recovery practices and technologies
that could be implemented.

2. Underground mining operations

Mining is classified into surface and underground
operations, depending on the location, size, depth
and grade of the deposit [11]. Surface mining op-
erations do not utilize heating, ventilation and air
conditioning (HVAC), which accounts for over 25%
of underground mine energy consumption [37].
Underground mining also requires more energy to
cope with extended requirements for hauling and
dewatering [11]. As a consequence, the focus here is
on heat recovery from underground mines.

2.1. Mine water

The need for dewatering in both operating and
closed mines presents a promising opportunity for
geothermal energy recovery. Mine dewatering
usually consists of pumping water from a series of

Table 1. Summary of waste heat recovery methods and potential applications.

Waste Heat Source Heat Recovered
(MW)

Recovery Method Potential Application Stage of Recovery Method

Mine ventilation
exhaust

9e11 [18,19] Direct spray recovery with heat
pump [19]
Heat exchangers [21]

Ventilation preheating
[20]
Space heating [21]

Potential recovery
methodmethod

Mine dewatering 1e5 [22] Heat pumps [23] Space heating [23,24] Implemented in industry
Electric Arc

Furnace
cooling water

10e60 [25] Heat exchangers [26]
Steam generators [26]

Electricity generation [27]
Steam [27]

Potential recovery method

Off-gas 60 [28] Organic Rankine Cycle [29] Electricity generation [29] Implemented in industry
Bubbled-in off-gas [30] Microalgae cultivation [30]

Slag recovery 9e20 [31,32] Mechanical crushing with heat
pump recovery [33]

Preheating air of ore
dryers [34]

Potential recovery method

Centrifugal and air blast
granulation using fluidized bed
recovery [33]

Reheating boiler feed
water [34]

Packed-bed heat exchanger [32] Electricity or steam
generation [35]
Combustion air
preheating [35]

Smelter process
cooling water

40 [6] Heat pumps [6] Space heating [6] Potential recovery method
Steam production [36]
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wells within the mine to the surface. Dewatering is
important, as water levels must be continuously
managed to ensure the stability of mine walls and to
prevent flooding. Unwanted water can enter a mine
from surface accumulations, aquifers, bed separa-
tion cavities, solution cavities and old mine work-
ings [23]. Extracting heat from deep underground is
beneficial, due to geothermal gradients and large
water-rock interfaces resulting in a transfer of heat
to the water [22]. The application of geothermal heat
pumps can allow for the low-grade thermal energy
from warm mine water to be used in a variety of
space heating and cooling applications [24].
Heat pumps use external energy (typically elec-

tricity) to upgrade heat to a higher temperature. In
a compression heat pump, low temperature heat is
absorbed in an evaporator and the vapor is then
compressed, resulting in the rejection of heat at an
elevated temperature in a condenser, illustrated in
Fig. 1. Heat is recovered from the condensed fluid,
which in turn is expanded and the cycle repeats [5].
The upgraded temperature can be useful for
repurposing in applications.
However, a major limitation of the application of

the recovered heat is the temperature rise provided
by a heat pump, which is typically 25 �C or less [5].
This is seldom exceeded, since compressors with
high ejection pressures, which therefore generate
higher temperatures, will have increased payback
periods due to much higher capital and operating
costs [5]. Therefore, with low-grade heat, output
temperatures greater than 110 �C are rarely ach-
ieved, making the heat recovered by heat pumps
unsuitable for many industrial process applications
[17].
In an effort to overcome this limitation, chemical

heat pump technologies are emerging for the more
effective extraction and repurposing of thermal en-
ergy. They are driven by reversible chemical re-
actions and are an environmentally low impact
method [39]. The capacity of the system for storage
along with the ability to efficiently upgrade thermal

energy and deliver it at high temperatures of more
than 200 �C makes it a beneficial solution for low-
grade heat recovery [40].
Additionally, after an underground mine is

closed, continuous dewatering practices are usually
scaled down or ceased, and water levels may rise
until the mine is flooded. As a consequence, aban-
doned mines can still provide a resource for
geothermal energy recovery [40,41]. It has been
estimated that there are over one million abandoned
mines worldwide, with approximately 3000MW of
heat energy remaining untapped in the water within
the flooded coalfields of Europe alone [22].
Pumping water from abandoned mines may

require a significant amount of electricity, and may
be too costly, but there are sites where gravity as-
sists in the discharge of water, or pumping is
already required for the maintenance of abandoned
mines [22]. In some locations, pumping and treat-
ment facilities are installed to control water levels,
as well as treat the water to the extent necessary to
make it safe for release to the environment. The
treatment technology depends on the characteristics
of the mine water, but may include chemical pre-
cipitation, membrane applications, and/or biological
treatment [42]. As the energy demand of a treatment
facility may be very high, particularly due to large
pumping requirements, it presents an opportunity
for a heat recovery application to off-set costs [22].
Heat pump technology is currently used in many

low-grade heat recovery systems for mines. For
example, in Great Britain, the escape of contami-
nated water into the environment from abandoned
coal mines is being addressed by the Coal Authority
and they have installed 64 treatment systems [22].
A study was undertaken that analyzed 21 of these
treatment sites and compared electrical power
consumption and thermal power potential [22]. The
total low-grade thermal energy of all the mine wa-
ters considered was 47.5MW. Many of the mines
that required large power consuming treatment fa-
cilities also provided the greatest heat resources due
to deep mine waters. For example, for a mine in
Durham, England with groundwater temperatures
of around 15 �C, it was found that a temperature
drop of 4 �C could achieve 4.85MW of recoverable
energy. Whilst at another mine in England, a tem-
perature drop of 4 �C could achieve 806 kWt of
recoverable energy. A gravity fed treatment system
with water temperatures around 14 �C at Morlais in
South Wales was found to offer around 2.90MW of
recoverable thermal energy by reducing the tem-
perature of its water flow by 4 �C [22].
It has been proposed that the application of heat

pumps would be a feasible option to capture this

Fig. 1. Heat pump principle in mine dewatering application (adapted
from [38]).
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otherwise wasted heat at high efficiencies. In Shet-
tleston, Scotland, a system was installed to recover
energy from water in flooded coal mines at a depth
of 100m [23]. Two heat pumps were used to provide
space heating by heating the water to 55 �C before
storing it in a tank for subsequent distribution to 16
nearby houses. In Heerlen, Netherlands,
a geothermal district heating system has been
implemented by repurposing thermal energy from
several mine shafts in a flooded abandoned coal
mine. The system, which provides district heating
and cooling to over 350 homes and businesses, was
achieved by drilling five wells 700m deep around
the town in order to access underground mine
shafts [43]. The wells are able to pump nearly 80m3

of water per hour at temperatures between 15 �C
and 30 �C [44], and a heat pump is used at the sur-
face to extract and generate heat at an average of
28 �C [43].
A heat recovery project inNova Scotia, Canadawas

carried out by a plastic packaging manufacturer. It
involved the instalment of ground source heat pumps
to take advantage of otherwise wasted heat in flood
water from abandoned coal mines [45]. At a water
temperature of 18 �C, an initial projection found en-
ergy savings as high as 70% could be achieved [46].
Thewaterwaspumped from140mbelow the surface,
extracting heat and lowering the mine water tem-
perature to 13 �C. Eleven heat pumps were installed
to provide hot water heating at the plastics plant, at
a rated capacity of 985 kWh/day [46]. The capital cost
to implement the heat pump system was $110,000, as
opposed to $70,000 for the alternative propane heat-
ing system [46]. However, operating costs of the heat
pump system provided annual savings of approxi-
mately $45,000 [47].
A geothermal heat recovery system was imple-

mented in the city of Asturias, Spain, at an aban-
doned coal mine near the University of Oviedo [48].
The heat from the flooded mine water is recovered
using four geothermal heat pumps to provide water
heating at a temperature of 46 �C to two of the
university buildings, as well as to a nearby hospital.
At an average water flow of 215m3/h, the recovery
system reduces the temperature of the mine water
from 23 �C to 13.9 �C, allowing for a total annual
energy saving of approximately 73% and an annual
CO2 reduction of 39%.
Other types of mines can also be considered, such

as the abandoned Wheal Jane tin mine in Cornwall,
England, which after flooding began to leak water
into the environment. A treatment system was
installed to control mine water discharges and
involved pumping water from the shaft and treating
it with lime. When the treatment facility was

eventually discontinued in 1992, the mine had
released 50,000m3 of water with an average metal
concentration of 3500mg/L to the surrounding
environment [23]. It has been suggested that this
would be a prime opportunity to install a heat re-
covery system and continue long-term monitoring
and treatment of the mine water [23]. A copper, zinc
and sulphur mine in Norway that closed in 1941
established a heat recovery system from the water of
the abandoned mine [49]. A heat pump was
installed to provide space heating for an under-
ground cavern which is used by the community for
various events.
Geothermal heat pumps typically have high initial

investment costs due to connections underground,
including drilling, piping and excavation [50], costs
that can largely be avoided if utilizing an abandoned
floodedmine. Conmine, an abandoned gold mine in
Yellowknife, Canada is a prospective geothermal
heat source for the city based on a preliminary study
on the potential to recover low-grade heat for space
heating [51]. Of the total energy consumed by the
community, approximately 70% is for space heating,
resulting in about 277,000 tons of greenhouse gas
emissions annually [52]. The study focused on
possible technologies to recover heat, as well as
approximate costs and payback periods using the
example of a 300 kW heat demand [52]. Heat pumps
were found tobe apotential solution forheat recovery
from mine water 400m below the surface [51]. The
temperature would be increased from 35 �C to about
45 �C, with a total power requirement of 90 kW [52].
The net annual savings were projected to be $95,000
for the project, with a payback period of less than 8
years [52]. The study demonstrates the economic
feasibility of heat pumps over time, as they typically
have a higher initial capital cost compared to other
heating systems, but lower operating costs.

2.2. Mine ventilation exhaust

Through heat transfer from the host rock,
geothermal heat is a large contributor to the air
temperature of deep mines and the necessary air
conditioning and ventilation requirements create
a high-energy demand. Exhausted mine ventilation
air temperature is typically around 30 �C, with the
relative humidity being about 90% [19], and in many
cases this heat is released to the atmosphere at
temperatures higher than ambient [21]. A ventila-
tions system's wet airflow carries, therefore, a sig-
nificant quantity of latent heat that could be
available for energy recovery and reuse [19]. Waste
heat can be extracted from this exhaust air using
a medium like water or glycol and then used for
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underground ventilation inflow heating or directed
to an alternative application, such as space heating
of nearby buildings [21].
For mines located in cold climates, heating the air

intake can also contribute significantly to the overall
cost of operation. The 700m deep Kylylahti copper
mine in Finland, to prevent shafts and equipment
from freezing, requires heating the supply ventila-
tion air to approximately 3 �C during months when
ambient temperature ranges between 0 �C and
�15 �C [20]. The heating system is currently ach-
ieved with two gas burners, but with the supply
airshaft and the return airshaft only 30m apart, this
provides an opportunity to exchange heat between
the two airflows.
A laboratory experiment in China analyzed the

combination of a direct spray recovery unit with
a heat pump system for the extraction of low-grade
energy from air mine exhaust [19]. A multi-stage
reverse spray heat exchanger was used, where water
is sprayed in the opposite direction of the airflow in
multiple stages to improve heat transfer efficiency.
This enabled the temperature of the spray water to
increase from 7 �C to about 15 �C. A heat pump was
subsequently used to extract this heat, with the
cooled water returned back to the spray tower. The
average exhaust ventilation air temperature and
humidity at the surface during cold months are
parameters that need to be taken into account to
calculate heat recovery potential [21]. A heat pump
is an efficient option, since the temperature and
humidity of the exhaust air remains fairly constant.
In one of the experiments, 3.47 kg/s of cold water

recovered heat at 119 kJ/s from 3.52 kg/s of air when
the spray coefficient was 0.9. The results showed
that heat exchange efficiency could reach over 85%.
This investigation led to the prediction that appli-
cation in a mine with an air flow rate of about
7.2� 105m3/h and using 759m3/h of cold water
could recover about 11MW.

3. Mineral processing off-gas

3.1. Electric arc furnaces

The production of steel is often accomplished with
the use of an electric arc furnace (EAF) [53], tech-
nology, which in comparison to a blast furnace,
produces less waste and has a lower energy con-
sumption per ton of steel [54]. Electric arc furnaces
consume electrical energy and fuels, such as natural
gas, to melt and convert solid materials, e.g. iron
scraps, into molten steel, which is then further
refined to produce high-grade steel [55]. Neverthe-
less, the iron and steel industry is one of the largest

polluters of the industrial sector [26], contributing
approximately 4% of the total global greenhouse gas
emissions [54].
The amount of energy required by an EAF to melt

scrap iron is 350e370 kWh/tsteel [55] and this re-
leases large amounts of waste heat in an off -gas that
is typically around 1250 �C and with flow rates of up
to 150,000 Nm3/h [27]. It is estimated that up to 50%
of all energy losses and nearly 30% of the energy
input is lost in the off-gas from EAFs [53]. Heat re-
covery from EAFs in the steel industry could,
therefore, significantly improve process efficiency,
and reduce costs and greenhouse gas emissions.
The Organic Rankine Cycle (ORC) is a piece of

technology that can be used to recover high-grade
heat from an EAF for use in power generation. In
2013, The ORC production company Turboden
successfully implemented a heat recovery system
from the off-gas of a 133 t/h EAF used in an iron and
steel manufacturing plant in Riesa, Germany [29].
From an off-gas temperature of 1600 �C, the ORC
unit used in the design allowed for 3MW of elec-
trical output, resulting in a payback period of
approximately five years.
Off-gases from EAFs must be cooled before they

can enter the de-dusting (dust collection) stage.
Typically, they are cooled inside a water-cooled hot
gas duct to reduce the temperature to the maximum
allowable for the dust collectors, about 600 �C, with
the removed heat dissipated to the environment
[26]. This has been, therefore, an area of particular
interest for heat recovery and application research,
as the dissipated low-grade energy could be used by
a number of process technologies within the steel
production plant. For example, waste heat recov-
ered from an EAF could be used for electric energy
generation, steam production, or scrap metal pre-
heating before the melting process [27].
Energy can be recovered and repurposed at the

gas cooling phase through steam generation for use
in processes such as shop and office heating, as well
as in mills for jacket heating of pickling tanks and
fuel oil lines [56]. Steam can also be used for elec-
tricity generation using steam turbines [57]. In
steam generation, an evaporative cooling system
can be installed at the de-dusting system of the EAF
and steam generated as water evaporates during the
cooling process [53].
A study was performed on a 145-ton EAF [53] to

determine the effectiveness of an evaporative cool-
ing system integrated in the cooling water circuit of
the de-dusting system at various water pressures. It
was found that when the pressure of the boiling
water was at an optimal 1MPa, the amount of steam
produced from the heat discharged in the gas was
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25.3e28.8 tons per 145 ton batch, with a total exergy
of 20e23 GJ.
A waste heat recovery model for steam production

from a steel plant was developed in order to find
optimized operating parameters [26]. In the model,
waste heat was recovered from an EAF used to melt
steel scrap and produce molten steel, and the re-
covery system included heat exchangers, steam
generators and a thermocline storage tank. The off-
gas was to be cooled to 600 �C from a peak tem-
perature of 1200 �C using cooling water. The cooling
water outlet temperature was around 50 �C, but was
increased to 200 �C in the model to directly recover
heat by producing saturated steam in a shell and
tube steam generator. An alternative heat recovery
option that utilized heat pumps to upgrade this
stream temperature was also considered. The mass
flow of cooling water inside the cooling system was
controlled using a circulation pump to deliver
a minimum mass flow of cooling water in the hot
gas line and ensure efficient heat transfer. It was
determined from this study that stable and contin-
uous operation was achievable with this approach.

3.2. Smelters

Industrial waste heat recovery from a smelter can
provide the necessary conditions required to grow
and maintain microalgae year-round in cold regions
[30], with the lipids they produce a potential bio-
diesel feedstock [58]. Due to its relatively clean-
burning characteristics, biodiesel can be especially
useful in underground mine applications [6,59].
However, the mass production of microalgae is

traditionally not possible in temperatures that drop
below 15 �C and, therefore, it was previously found
to be practical only in year-round warm climates
[30,60]. To resolve this issue for cold climates where
many mining and mineral processing operations
exist, employing waste heat from a nickel smelter
site to support algal growth tanks has been inves-
tigated [28]. The two major sources of waste heat
identified were off-gas streams from the fluidized
bed roasters and the furnace. The roaster off-gas
undergoes on-site gas cooling from 680 �C to 50 �C
to enable the capture of SO2 through the production
of sulfuric acid. Whilst the off-gas from the furnace
is released at a temperature of approximately 350 �C
[30]. The off-gas streams represent a combined
60MW of waste heat dissipated into the environ-
ment without any recovery [28].
A study modelled the impact on algal pond tem-

perature from direct bubbled-in off-gas from the
furnace and heat recovered by a heat exchanger
from the roaster off-gas [30]. The results showed

that significant microalgae cultivation could be
achieved year-round, even when ambient air tem-
peratures fall well below 0 �C.

4. Slag waste heat

The slag from smelter furnaces represents a sub-
stantial amount of “stored” energy, which is lost
during solidification. It is estimated that over 40% of
the energy supplied to a smelter furnace remains in
the slag, with 1e2 GJ of thermal energy contained
within one ton [35,61]. Slag has potential commer-
cial value after proper cooling and treatment [62,63],
and it is during this process that waste heat recovery
can be achieved [64]. For example, blast-furnace
slags can be used as a feedstock in the
manufacturing of cement, with slag representing
approximately 13% of world cement production
[65,66].
Traditionally, solidification was achieved through

water quenching, with large volumes of water used
to rapidly cool molten slags [33,67]. In this tech-
nique, molten slag at a temperature of around
1500 �C may be cooled to around 50 �C using a high
velocity water stream [67,68]. The water used in this
process is recycled and cooled to less than 50 �C,
typically by using cooling towers [68]. One of the
major drawbacks of this technique is the difficulty of
achieving heat recovery using direct application
methods, such as heat exchangers, due to the large
heat loss through evaporation whilst cooling the
slag [69,70]. In addition, low-grade heat is released
from the cooling towers to the environment without
being recovered [69]. However, this could provide
an opportunity for the application of heat pumps to
upgrade this low-grade waste heat, allowing for the
implementation of a heat recovery system.
With modern slag solidification methods, heat

recovery systems that allow for cooling re-
quirements to be achieved are becoming more
common. These include the production of steam or
hot water for power generation and other industrial
processes, or heating the air of ore dryers [71,72].
The recovered energy can also be incorporated back
into the furnace process by preheating combustion
air [35].
A study using both laboratory-scale and pilot-

scale experiments evaluated a heat recovery system
using a packed bed of hot slag plates [73]. The
molten slag was solidified in the shape of a plate
using water-cooled rolls and then it was used in
a packed slag chamber where heat exchange took
place with a counter-current gas flow. The slag
temperature in the pilot-scale test was around
1100 �C, and the maximum gas temperature
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measured was 716 �C [73]. From this it was deter-
mined that the heat recovery ratio relative to the
total heat of the molten slag was 43% [73].
Dry solidification of slag is currently being

developed as it offers the potential for an efficient
solidification process whilst also providing the op-
portunity for heat recovery [35]. The process in-
volves breaking up liquid slag into droplets that are
passed through a dry cooling stage, where heat can
be recovered as they solidify into granules [61].
Using air blast or centrifugal granulation methods
in the dry cooling stage, heat is transferred from the
droplets to air [33,61,74]. Further heat recovery can
be achieved as the solid granules are further air
cooled, often with a fluidized bed [35,61].
Early dry granulation techniques involved me-

chanical crushing with rotating drums [33] and then
transferring the broken slag to a cooling chamber
where heat exchange could take place with air [33].
However, processing methods such as this typically
only allow for low-grade heat to be recovered,
wasting a large amount of the thermal content in the
slag [34]. Heat recovery from mechanical crushing
could, therefore, be an opportunity to apply heat
pumps to upgrade the thermal energy to a useful
temperature.

New technologies are being investigated to enable
recovery at higher temperatures, of which rotating
cup granulation is a leading centrifugal method
[33,64]. This involves liquid slag being poured into
a high-speed rotating cup, which forms droplets
that cool as they are ejected outwards. The process
produces hot air, typically in the range of
200e300 �C, which is passed through an exchanger
to recover the heat and can be used for combustion
air preheating or to produce steam or electricity
[35,61]. In a commercial trial carried out in Britain, it
was found that 59% of the slag heat could be
recovered when slag particles were cooled to 250 �C
from an initial slag temperature of around 1500 �C
[33,61].
Another option is an air blast process, where the

molten slag comes into contact with gas traveling at
high speed and pressure, resulting in the slag
breaking up into small particles [61]. This process
again uses a fluidized bed to remove heat from the
solid granules. A heat recovery system was adapted
to a laterite nickel rotary kiln electric furnace plant
in Canada, where slag was granulated using a high
velocity air jet inside a waste heat boiler to produce
granules [34]. The granules were cooled by radiation
to water-cooled boiler walls and by convection to
the granulation air. Heat application methods were

Table 2. Comparison of various slag solidification methods.

Slag Solidification
Method

Advantages Disadvantages

Water quenching Produces a glassy slag suitable for the cement
industry [32]

Difficult to achieve heat recovery [69,70]

Efficient cooling of high temperature slag [75] High water consumption [70]
Reduced greenhouse gas emissions compared
to cement production from limestone [32]

Air pollution (SO2 and H2S emissions)
[75]

Suitable for large-scale applications [32] High energy consumption with
additional drying requirements [75]
Large particle size [70]

Mechanical crushing
with rotating drums

Opportunity for low grade heat recovery using
heat pumps [34]

Reduced processing capacity due to
slag pieces attaching to drum [70]

Up to 60% heat recovery can be achieved [70] Not suitable for industrial scale
operation [32]Decreases water consumption and gas

emissions for minimal environmental impact
[35]

Rotating cup
granulation
centrifugal

Minimal environmental impact [32] Still in development phase [32]
Small slag particle size [70] Not well tested for large-scale

applications [32]
Allows for high grade waste heat recovery [35] Heat recovery process requires

fluidized bed [35]High glassy phase [32]
High process capacity [70]

Air blast Minimal environmental impact [32] Heat recovery process requires
fluidized bed [35]

Allows for high grade waste heat recovery [34] Large volume of air results in high
energy consumption and operating
costs [70]

High process capacity [70] Low cooling speed [70]
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established to integrate the recovered energy into
the smelter, including preheating air at the ore
dryers, reheating boiler feed water, and electricity
generation. From this study, it was determined that
the heat recovery system could provide up to
25e30% of the total electrical requirements of the
rotary kiln electric furnace, as well as reduce CO2
emissions by 234,000 tons per year [34].
A dry granulation heat recovery technique was

developed to recover high-grade heat from molten
slag [32]. Slag droplets were formed in a dry gran-
ulator process, which were cooled to produce glassy
granules at a temperature of about 900 �C. These
granules were transferred to a packed-bed heat
exchanger to allow for heat recovery from the slag. It
was found that the system could allow for approxi-
mately 80% of the heat to be recovered to produce
hot air or steam at temperatures above 600 �C,
which could be used in drying and preheating
applications.
The challenges associated with employing various

slag solidification methods are demonstrated in
Table 2.

5. Process water

During the study of a smelter, a number of pro-
cess streams in the facility were identified for low-
grade heat recovery [6]. The smelter processed
mainly nickel and copper custom feeds and con-
centrates, with annual production of around 75,000
tons of nickel and 23,000 tons of copper. With nickel
and copper bearing sulphide ores as the primary
feedstock, the total waste heat rejected to the envi-
ronment from the fluidized bed roaster off-gas, the
furnace off-gas, the furnace cooling water, the matte
granulation cooling water and the acid plant cooling
water during operation was calculated to be in
excess of 100MW [6].
The most promising streams were found to be

process cooling waters from the calciner, the matte
granulation process and the furnace, as these were
all in the temperature range (20e90 �C) which is
suitable for the application of heat pumps [76]. It
was determined that for the beneficial application of
the recovered energy, the waste heat would first
need to be upgraded by heat pumps. This offered
the potential to provide space heating and cooling of
a nearby office building, and to replace an aging
natural gas furnace with an average annual demand
of 510 kW, as well as reduce CO2 emissions by
approximately 62% [6].
An iron and steel plant located in the Netherlands

was investigated to determine the feasibility of
implementing a heat recovery system using cooling

water from the rolling process, where rolled steel is
cooled by spraying water at a temperature of 80 �C
[36]. A preliminary study found that waste heat from
the cooling water of the hot strip mill can be
recovered using an absorption heat pump, which
could then be applied to produce low pressure
steam at 1.7e3.5 bar and 130 �C [36]. It was deter-
mined that emission reductions of 1.9 kg CO2/trol-
led steel could be achieved with the implementation
of this technology [36].

6. Conclusion

The mining and mineral processing industry is
extremely energy intensive, yet in general carries
out relatively little waste heat recovery and repur-
posing. Many sites are located in very cold climates
where recovery and repurposing on-site to supply
space heating or the pre-heating of gas and liquid
process streams could significantly contribute to the
sustainability of the operation. Where recovery does
exist, the target is generally high-grade waste heat
sources in gasses or liquids with temperatures
greater than 100 �C, most of which is related to
smelter furnaces. This high-grade heat in the
exhaust gas from electric arc furnaces, for example,
can be extracted for direct recovery applications,
such as steam generation, electricity production, or
process stream preheating. In most cases use of heat
exchangers, which are well understood and widely
used throughout all industries, prove to be the most
appropriate recovery route. Although, over 40% of
the energy supplied to a smelter furnace remains in
the slag, representing substantial energy that is
rarely tapped. High-grade waste heat can also be
captured and used for power generation by driving
heat engine technologies such as the Rankine cycle.
Significant opportunity also lies in the abundant

quantities of low-grade thermal resources which are
less than 100 �C. Recovered energy, again usually
with heat exchangers, from process streams with
temperatures between 70 and 100 �C may be
upgraded by adding energy to raise the temperature
to allow for repurposing, e.g. through steam gen-
eration. However, the copious quantities of re-
sources that are below 70 �C are usually discounted
by the industry as too difficult to capture and
repurpose. However, it is proposed that an effective
way to recover this low-grade waste heat, is
upgrading it with heat pumps. This can allow for the
recovery of waste-heat as an economically viable
option as well as reduce overall greenhouse gas
emissions. Geothermal heat pumps, which can
provide a lift in temperature from 15 to 20 �C to
around 30e40 �C can be effective for the recovery of
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waste heat within flooded abandoned mines for use
in local space heating, such as in nearby homes or
community centers. For operational sites, such as
smelters, process cooling streams offer the most
potential and chemical heat pumps are the more
appropriate option as they can provide a tempera-
ture increase greater than 25 �C. The recovered heat
becomes more suitable for displacing existing pro-
cess stream heaters or to be used to replace fossil
fuel fired boilers to supply space heating, thereby
reducing both annual operating costs, as well as
CO2 emissions.
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