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Abstract

Due to the complex geology of vein deposits and their erratic grade distributions, there is the tendency of over-
estimating or underestimating the ore grade. These estimated grade results determine the profitability of mining the ore
deposit or otherwise. In this study, five Extreme Learning Machine (ELM) variants based on hard limit, sigmoid, trian-
gular basis, sine and radial basis activation functions were applied to predict ore grade. The motive is that the activation
function has been identified to play a key role in achieving optimum ELM performance. Therefore, assessing the extent of
influence the activation functions will have on the final outputs from the ELM has some scientific value worth investi-
gating. This study therefore applied ELM as ore grade estimator which is yet to be explored in the literature. The obtained
results from the five ELM variants were analysed and compared with the state-of-the-art benchmark methods of Back-
propagation Neural Network (BPNN) and Ordinary Kriging (OK). The statistical test results revealed that the ELM with
sigmoid activation function (ELM-Sigmoid) was the best among all the other investigated methods (ELM-Hard limit,
ELM-Triangular basis, ELM-Sine, ELM-Radial Basis, BPNN and OK). This is because the ELM-sigmoid produced the
lowest MAE (0.0175), MSE (0.0005) and RMSE (0.0229) with highest R2 (91.93%) and R (95.88%) respectively. It was
concluded that ELM-Sigmoid can be used by field practitioners as a reliable alternative ore grade estimation technique.

Keywords: extreme learning machine, artificial intelligence, artificial neural network, grade estimation, kriging

1. Introduction

A n important aspect of mining is ore grade
estimation, since it determines the viability

of actively mining a mineral of interest. This
process mainly involves estimating the reserve
and grade using statistical procedures with sam-
ples obtained during drilling to determine the
feasibility of mining the resource. Geostatistics is
the conventional ore grade estimation technique
which proves to be effective in the grade predic-
tion of relatively uniform and massive deposits
[1e4]. However, in extremely heterogeneous data
sets, the geostatistical technique tends to perform
poorly due to the complicated nature of the var-
iograms obtained which are mostly rendered
useless for further analyses and tend to

overestimate or underestimate the resource [3,5].
Also, manual tasking during the geostatistical
resource estimation processes encourages bias
and may introduce errors in the predicted ore
grade values. These practical limitations are
found in the most widely used geostatistical
technique of Ordinary Kriging (OK). Over the
years, in the quest to fix and improve the per-
formance of OK, various kriging techniques such
as indicator kriging [6,7], disjunctive kriging
[8e10], multigaussian kriging [11,12], probability
kriging [13e15], lognormal kriging [16,17] and
outlier restricted kriging [18,19] were developed.
These modifications resulted in more time
consuming, computational complexity and overly
expensive resource estimation processes. Due to
these shortfalls, alternative resource estimation
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Table 1. Review of AI techniques applied in ore grade estimation.

Author Technique Observation

Wu and Zhou [20] Multilayer Feedforward Neural Network
(MLFNN) with Dynamic Quick-Propagation
(DQP) variant

The technique overestimated and
underestimated low-frequency values such as
high-grade values as a result of smoothing. The
number of data points employed in the study
was 51.

Al-Alawi and Tawo [22] BPNN Required more data for prediction. Hence it
possessed poor generalisation ability. Number
of sample points used was 163.

Kapageridis and Denby [23,47]
Kapageridis et al. [48e50]
Kapageridis [24]

Radial Basis Function (RBF) and Multilayer
Perceptron (MLP)

The neural network's resource estimates gave
comparable results to kriging with fewer sample
data. The number of drill hole data used in these
studies ranged from 50 to 3600.

Matías et al. [51] MLP, Regularisation Networks (RN) and RBF Kriging outperformed the MLP, RN and RBF
using a total of 1932 samples.

Samanta et al. [52] Kohonen Neural Network (KNN) KNN and kriging models performed almost
equally well. However, grade values were
generally overestimated due to the high nugget
effect. The total number of drill holes used in the
research was 497.

Samanta et al. [25] MLFNN and SLFN with the Adaboost
algorithm, BPNN

NN generally did not perform well due to the
data's low spatial correlation and the high noise
of the gold data used. A total of 275 drill hole
data was employed in the study.

Chatterjee et al. [35] ANN NN outperformed OK using 5149 data points.
Samanta et al. [53] MLFNN with jump network and Genetic

Algorithm (GA)
OK performed slightly better than the NN
model. The number of exploratory borehole
data used in the research was 181.

Mahmoudabadi et al. [26] LevenbergeMarquardt Backpropagation
(LMBP) with GA

NNs were quite sensitive when the MLP was
used with back propagation-based algorithms
(LMBP) in generating initial weight values with
a limited training dataset. The study applied a
total of 65 drill hole data.

Li et al. [21] Wavelet Neural Network (WNN) WNN accurately captured the local nonlinearity
of the dynamic systems due to its multiscale,
multiresolution and localisation ability using 200
drill hole data.

Chatterjee et al. [33] GA and k-means clustering NN ensemble with
SVM and RBF kernel

The estimated results obtained using the SVM
and RBF outperformed OK. The number of drill
hole data applied in the research was 4745.

Badel et al. [54] MLFNN with Conjugate Gradient Method
(CGM) optimisation and K-means clustering

Results of the Multiple Indicator Kriging (MIK)
were more similar to the actual grade values.
MIK also had better local precision than the
ANN technique using a total number of 1802
data points.

Guo [55] MLP, X-Ray Diffraction (XRD) and Levenberg
eMarquardt (LM)

MLP training preferred correlated data. The
dataset used was 82 drill holes.

Dutta et al. [56] ANN-GA The results obtained from the hybrid NN
models generally did not perform well using a
total number of 168 borehole data.

Dutta et al. [36] Support Vector Regression (SVR) and LM
Backpropagation (LMBP) NN algorithm

The SVR model gave the best results out of the
NN, and OK methods applied. However, the
upgrade was minimal due to the existence of
extreme sample values in the 3500 drill hole data
employed in the study.

Tahmasebi and Hezarkhani [27] Adaptive Neuro-Fuzzy Inference System
(ANFIS)

ANFIS gave better results than FL, ANN and
Kriging. The number of data points used in the
study was 258.

(continued on next page)
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Table 1. (continued)

Author Technique Observation

Tahmasebi and Hezarkhani [57] Multiple layer Neural network based on GA
(ANN-GA) and ANN-based on Fuzzy logic
(ANN-FL)

ANN-GA predicted the grade values well with
high accuracy than ANN-FL results.
The model had a small and individual structure
that allowed the user to manage and control the
NN training to derive the network's sound
performance, especially with small data sets.
However, due to the user's interference with the
processing, the results could be biased. The
number of borehole data used was 65.

Tahmasebi and Hezarkhani [31]

Tahmasebi and Hezarkhani [58] Coactive Neuro-Fuzzy Inference System
(CANFIS) with GA and ANFIS-GA

The CANFIS-GA produced the best results due
to its high correlation coefficient; however,
ANFIS-GA gave best the least error on the
testing data set. Data from 156 boreholes was
applied in the study.

Maleki et al. [59] Support Vector Machine (SVM),
Backpropagation Neural Networks (BPNN)

The SVM was fast and gave more accurate
results than that of the BPNN model using 4000
data samples.

Gholamnejad et al. [32] MLFNN with Tanh activation function and
LevenbergeMarquardt (LM)

The predicted values were deemed acceptable
and had a correlation coefficient of 0.8. The
number of sample points employed in the study
was 2068.

Granek [60] SVM and Convolutional Neural Network (CNN) The CNN model was quite complicated,
challenging to modify and computationally
demanding but had an advantage over SVM by
recognising anomalous structures in data. The
number of sample points used in the research
was 70.

Li et al. [37] Self-adaptive Learning-based Particle Swarm
Optimisation Support Vector Regression
(SLPSO-SVR) model

The SLPSO-SVR technique performed better
than PSO-SVR, ANN, comprehensive learning
PSO-SVR and Grid-SVR. This technique had
many advantages which included its rapid
training ability and grade estimation using 2000
sample data points.

Jafrasteh and Fathianpour [61] Local Linear Radial Basis Function (LLRBF) with
Skewed activation function (SG), Simultaneous
Perturbation Artificial Bee Colony algorithm
(SPABC) and BPNN

The standard RBF trained with SPABC-BP
algorithm showed higher generalisation ability
and better prediction of ore grades for highly
skewed data than LLRBF-SG-SPABC-BP and
LLRBF-SPABC-BP. The technique was ideal for
capturing nonlinear mappings in the 1250 data
points used in the study.

Jafrasteh et al. [34] Random Forest (RF), Gaussian Process (GP),
MLP with LM

GP gave the best performance compared to the
others since it provided a smoother
interpolation and offered a more accurate
prediction. IK was the next to provide a better
estimation, and MLP gave the worse
performance. However, all the techniques were
sensitive to sudden variations of the copper
concentrations. The number of data points
employed in the study was 5647.

Singh et al. [30] Recurrent Neural Network (RNN) RNN gave comparable results with kriging.
Kriging, however, performed slightly better
than RNN. The number of sample points used
was 3298.

Jahangiri et al. [62] Gustafson-Kessel (GK) clustering algorithm
with ANN

The accuracy of the results was poor based on
the prediction of some elements; however,
predictions were more accurate than the mine's
estimation techniques. The number of borehole
data applied was 1755.

(continued on next page)
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techniques using Artificial Intelligence (AI) have
been applied in ore grade estimation. AI tech-
niques, especially Artificial Neural Networks
(ANNs) have effectively been employed in min-
eral resource estimation using limited data and in
highly heterogeneous data sets [20e32]. Most of
these techniques applied in literature (Table 1) for
ore grade estimation are feedforward neural
networks. Their popularity stems from their
ability to approximate complex nonlinear map-
pings between input and output and produce
models for a large class of data. From Table 1, the
widely used ANN approach in ore grade estima-
tion is the Backpropagation Neural Network
(BPNN). Even though majority of the different AI
techniques used (Table 1) outperformed kriging
[20,22e24,26e28,31,33e37] a few suffered with
smoothing in noisy datasets [20,25,30,34,38] which
is not ideal in ore grade estimation.
Despite the broad applicability of BPNN, the tech-

nique has a wide range of limitations some of which
include: overfitting problems, slow convergence and
limited reasoning ability. BPNN also requires the
model training parameters to be manually tuned in
order to obtain optimum results which could lead to
local minima with suboptimal solutions [39e41]. The
chronological trial and error processes are required in
this technique as there are no lied down procedures
to ascertain the number of hidden neurons required
for the model development [42,43]. Thus, the various
issues of feedforward neural networks, including
slower learning speed due to the use of gradient-
based learning algorithms during the training phase
and iteratively tuning all network parameters are
addressed with the introduction of the Extreme
Learning Machine (ELM) in Huang et al. [39].
In light of the strength and mathematical con-

venience, the study adopted the ELM approach for
the ore grade estimation. The ELM was designed
for Single Hidden Layer Feedforward Neural
Network (SLFN) that randomly chooses its input

weights and hidden layer biases and can
adequately learn on a given data set. It does this by
adopting the function approximation in a finite
training set resulting in its ability to apply almost
any non-linear activation function to produce
distinct predictions [39]. However, in practical
application of the ELM, different variants exist
based on their activation functions. These activa-
tion functions have been found to be a key factor in
ELM achieving optimum prediction performance.
Therefore, assessing the impact of the activation

function on the ELM performance for ore grade
estimation has some scientific value worth investi-
gating. In line with that, this study applied the
following activation functions: Radial basis, Hard
limit, Sigmoid, Triangular basis and Sine. Despite
the wide application of ELM for solving diverse
science and engineering problems [44e46], there is
close to no application of ELM for ore grade esti-
mation. Furthermore, no ore grade estimation study
has assessed and compared the ELM variants with
the state-of-the-art benchmark methods of BPNN
and OK. Therefore, taking into consideration the
strength of the ELM, this paper aims at:

- Determining the viability of the variants of ELM
as a novel approach for ore grade estimation
using exploratory data from a mine in Ghana;

- Determine its generalisation and predictive
ability using heterogeneous data set; and

- Perform comparative analyses between the
developed variants of ELM (ELM-Sine, ELM-
Sigmoid, ELM-Radial Basis, ELM-Triangular
Basis and ELM-Hard Limit) and benchmark
techniques of BPNN and the OK.

2. Materials and methods

2.1. Study area

This research was conducted in a mine (hereafter
Mine X) in Ghana. Mine X deposit is found in the
Ashanti belt of the Birimian Supergroup and are

Table 1. (continued)

Author Technique Observation

Manna et al. [63] MLP (with 7 Principal Component Analysis
(PCA) with ADAM optimiser

The obtained results were promising but
required more sample data to ensure the
developed model has a good generalisation
ability as the samples were few (89 samples).

Zhang et al. [28] Weighted Least Square Support Vector
Regression (WLS-SVR)

The robust weighted WLS-SVR outperformed
BPNN, OK and Inverse Distance Weighting
(IDW) due to its strong predictive and
generalisation ability. The number of samples
used the study was 2304.
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mainly volcanic rocks. The Birimian supergroup
consists of northeast-striking belts with significant
faults. The deposits found in the Ashanti belt
contain mesothermal gold vein-type deposits [64].
Thus, the mineralisation is found in steep NNE-
SSW to NEeSW trending shears. The gold is found
in two principal ore types: quartz veins with free-
milling gold, and sulphide ore containing arseno-
pyrite, pyrite and rare pyrrhotite and marcasite with
refractory gold [65]. A map of the study area is
shown in Fig. 1.

2.2. Materials

Secondary data was obtained from Mine X. The
data comprised of assay, survey, lithology, and col-
lar files obtained from exploratory drilling pro-
gramme. The collar data contains the hole ID, the X,
Y and Z coordinates of each collar, maximum depth
of the drill hole and the type of drilling method. The
assay data contains the composite Hole ID, From, To
and the Assay value observed in that composited
section of the borehole. The survey file consists of
composite borehole sections at a particular location
with its dip and bearing. The lithology file com-
prises composite collar data and the area between
the “From” and “To” is given the observed rock
type. The rock types observed were Schist (SC),
Meta Volcanic (MV), Quartz (QU), Greywacke (GK),
Phyllite (PH) and Laterite (LAT). The entire data set
comprised of 3759 drilled holes.

2.2.1. Statistical description of data
The samples were initially taken at varying

depths which made compositing necessary.
Compositing involves the averaging of the original
assay values to pre-specified lengths. This creates
homogenous support of the data to be used for
estimation and minimises data variability.
Compositing, therefore, produces more robust sta-
tistical and structural analyses. The statistics were
done on 1m composite samples to identify if pop-
ulations within the deposit were significantly
different. It was also used to access the effects of the
data distribution on the methods used for the grade
estimations. The total number of samples obtained
after compositing was 301 507 for the Assay and (X,
Y, Z) coordinate. Table 2 summarises the descrip-
tive statistics of the entire assay data and (X, Y, Z)
coordinate. A cumulative frequency graph was also
developed to ascertain the data distribution of the
assay values (Fig. 2).

2.3. Methods

This research applied two primary AI techniques
for ore grade estimation, the results of which were
then compared with those obtained from OK. The
AI techniques used include BPNN and ELM. The
ELM for ore grade estimation was assessed based
on five different activation functions: Radial basis,
Sine, Hard limit, Sigmoid and Triangular basis. The
OK technique was carried out using Datamine

Fig. 1. Geology of the study area.

60 JOURNAL OF SUSTAINABLE MINING 2021;20:56e71

R
E
S
E
A
R
C
H

A
R
T
IC

L
E



software, whereas the AI techniques were carried
out using MATLAB and Python programs.

2.3.1. Extreme Learning Machine
ELM is a learning algorithm for a SLFN which was

developed by Huang et al. [39]. ELMs work by
iteratively tuning parameters within the network
and based on the gaussian probability, it randomly
chooses it hidden neurons whiles the
MooreePenrose generalised pseudo inverse is used
to analytically determine the output weights of the
SLFN [66]. In order to train a SLFN, Eq. (1) [39] is
used.

min
g

��R�wi; :::;w ~N ;bi; :::;b ~N

�
g�Q

�� ð1Þ

where gi ¼ ½gi1;gi2; :::;gim�Qis the output weight
vector linking the ith hidden node with the output
node, bi is the threshold of the ith hidden neuron,
wi ¼ ½wi1;wi2; :::;win�Qis the weight vector connect-
ing the ith hidden node and the input neuron. In
training a SLFN, the least-squares solution is found
using Eq. (2) [67].

Q¼Rg ð2Þ

The smallest norm of output weight is achieved
wheng ¼ RyQ, where Q is the least-squares and R is
the output matrix of the hidden layer.
Based on the theory behind ELMs, givenN random

samples ( yi, ki) where yi ¼ ½yi1; yi2; :::; yin�T2Rnand
ki ¼ ½ki1; ki2; :::; kim�T2Rm, ði¼ 1; :::; ~NÞ a standard
SLFNs oj, with ~Nhidden neurons and activation
function g(y) applied in the training of the samples
are modelled mathematically using Eq. (3) [44].

X~N
j¼1

gig
�
wi $yj þ bi

�
¼oj j¼1;2; :::N ð3Þ

wi$yj represents the inner product of the wiand
yjwhereby the output weight wiis chosen randomly.
Eq. (4) represents the output matrix of the hidden
layer [44].

R¼
24g�w1$y1 þ b1

�
/ g

�
w ~N$y1 þ b ~N

�
« / «

g
�
w1$yN þ b1

�
/ g

�
w ~N$yN þ b ~N

�
35

N�~N

ð4Þ

Suppose the number of hidden nodes ~Nis
equivalent to the number N of various training data
points, ~N ¼N, the matrix R becomes square and
invertible after the input weight vectors wiand the

Fig. 2. Cumulative frequency of assay distribution.

Table 2. Descriptive statistics of samples.

Field Assay (g/t) X Coordinate (m) Y Coordinate (m) Z Coordinate (m)

Minimum 0 11 914.702 10 510.265 �1604.298
Maximum 2276 13 704.413 11 540.677 235.266
Range 2276 1789.711 1030.412 1839.564
Mean 4.008 12 876.910 10 991.710 �463.652
Variance 458.731 209 383.708 10 213.987 51 581.702
Standard Deviation 21.418 457.585 101.064 227.116
Standard Error 0.057 0.833 0.184 0.414
Skewness 49.706 �0.257 0.616 �0.237
Kurtosis 3586.004 �0.871 4.209 0.810
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biases bi are selected randomly. Once this happens,
SLFNs can estimate the training samples with zero
error. None the less N is mostly more than the
number of ~N, different training sample data in
practical terms. Detailed mathematical background
of ELM is produced in [39]. It is important to note
that, the ELM prediction performance is based on
the type of activation function used.
The main purpose of an activation function is to

determine if a neuron should be activated or not,
and is achieved by calculating the sum of weights
and the addition of a bias. Thus, the non-linearity of
the output node is achieved. If an activation function
is not applied to a neural network system, the
output will act as a simple linear regression function
with limited learning ability [68e70]. The selection
of the right activation function in a neural network is
crucial since an unsuitable activation function can
result in the loss of information from the input pa-
rameters during forward propagation and conse-
quently, exponential vanishing gradients during
backpropagation [71]. Several types of activation
functions can be found in literature, however, the
most commonly used such as triangular basis, sig-
moid, hard limit, sine and radial basis are applied in
this study.
The sigmoid activation function also referred to as

the logistic function is non-linear and is widely
applied in feedforward neural networks [72,73]. The
major advantages of the sigmoid activation function
is highlighted by Neal [74], some of which include:
easiness to understand and its use in shallow net-
works. The equation for the sigmoid activation
function is shown in Eq. (5) [72]:

gðxÞ¼ 1
1þ e�x

ð5Þ
The sine activation function is sinusoidal in

nature. Hence, it varies from the common activation
functions as it rises and falls. The study done by
Sopena et al. [75] showed that the sinusoids improve
accuracy and shortens training time. Although the
sine activation function has been applied, this is
rarely used as they are difficult to train [76,77]. It is
also saturated as its output converges to zero and
flattens as x approaches infinity, it also has numer-
ical problems and converges to local minima [78].
The sine activation function is governed by Eq. (6)
[78,79]:

f ðxÞ¼ sinðxÞ ð6Þ
The Triangular Basis Function (TBF) is a func-

tion whose graph is shaped like a triangle, more like
an isosceles triangle. It is quite useful in signal
processing and when used as an integral transform

function produces more realistic signals. The signals
from the function fall within the range of �1 to 1.
The triangular basis activation function is expressed
in Eq. (7) [80]:

bqiðyÞ¼br� y
yi þ 1

�
ð7Þ

where:

brðyÞ¼	1� y if 0� y� 1
0 otherwise:

bqiðyÞis the TBF and y is an independent variable.
Based on the gaussian curve, the Radial Basis

Function (RBF) is achieved. RBF applies a parameter
which calculates the mean value of a function. RBF
is a real-valued functiongwhose observation is
solely dependent on the distance from the origin,
thus (Eq. (8)) [72]:

gðuÞ¼gðkukÞ ð8Þ

otherwise, a distance from another fixed-point, i.e.
center c (Eq. (9)) [72] results in:

gðu; cÞ¼gðku� ckÞ ð9Þ
Therefore, any function g that satisfies gðuÞ ¼

gðkukÞis a radial function. The Euclidean distance
norm and the radial basis function which is
commonly taken to be gaussian are merged to
obtain an output. The sum of the equations will give
Eq. (10) [72] where yðuÞ is the output and wi is the
weight.

yðuÞ¼
XN
i¼1

wigðku� cikÞ ð10Þ

The hard limit function is essentially a transfer
function that allows the output neuron to produce a
1 if the input attains a threshold, otherwise, it out-
puts a 0. It is often used in the perceptron learning
rule and as a transfer function, it calculates the
output of a layers based on its input. Hard limit
activation function is governed by Eq. (11) [81]:

HardlimitðxÞ¼0x�0 þ 1x>0 ð11Þ

2.3.2. Backpropagation Neural Network
The AI technique that is commonly used in ore

grade estimation is BPNN since it serves as the
primary form of neural network [22,26,28,51,55,59].
The basic BPNN structure (Fig. 3) has three (3)
layers which is made up of the input, hidden and
the output; however, multiple hidden layers are
accepted in the BPNN architecture. External input
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parameter are received into the network via the
input layer, i.e. X, Y and Z coordinates to each input
neuron Xj ¼ ðX1;X2;X3; :::;XmÞT which are assigned
specific weightswij and a bias bi (Eq. (12)) [43]. The
input values are then transformed into weighted
inputs and are transferred to the hidden layer.
A mathematical nonlinear activation function is
then used to decide if the data in the input neuron
should be activated or not after which the trans-
formed data is given out through the output neuron.
As shown in Eq. (12), the input of the output layer is
obtained from the output of the hidden layer. The
linear activation function is used to transform the
input of the hidden layer to the output layer which
produces the final network output yi.

yi¼ f

 Xm
j¼1

�
wijXjþbi

�! ð12Þ

Designing a BPNN model involves a critical
process of, selecting a suitable number of hidden
layers, hidden neurons, training algorithm, and the
transfer function. Studies led by several scholars
have shown that for solving complicated problems,
a BPNN having a single hidden layer is enough as
a universal approximator [43,82,83]. Hence, one
hidden layer was used in this research. The hyper-
bolic tangent transfer function was employed in the
hidden layer whereas the linear transfer function
was applied in the output layer to give out the ore
grade value for the BPNN model. The training al-
gorithm applied was the LevenbergeMarquardt
optimisation method which is primarily used for
solving nonlinear least-squares problems. The
LevenbergeMarquardt algorithm works by
combining the gradient descent and the gauss-
newton methods. The gradient descent technique
works by updating the parameters in the steepest
direction to reduce the sum of squared errors. On

the contrary, the Gauss-Newton method is applied,
by summing the squared errors and reducing it by
assuming the least-squares function to be locally
quadratic in parameters, thereby finding the mini-
mum quadratic value [84]. The detailed mathemat-
ical background of the LevenbergeMarquardt can
be found in [84].

2.3.3. Ordinary kriging
Geostatisticians use the variogram as a funda-

mental tool to measure the spatial continuity of the
ore grade data. The experimental variogram is the
average variability between samples versus the
distance between samples [85]. This variogram
model is computed using Eq. (13) [86]:

gðhÞ¼ 1
2NðhÞ

XNðhÞ

a¼1

½Zðua þ hÞ �ZðuaÞ�2 ð13Þ

where: u is a vector of coordinates; z(u) is variable
under consideration as a function of spatial location;
h is the distance between the two points and
expressed as a vector; N (h) is the number of pairs
found at distance h apart; and Z (u þ h) is the value
of a second variable at location h units from u. The
spherical model is widely applied in most orebodies
(Fig. 4). This model is characterised by Eqs. (14)e(16)
[87].

gðhÞ¼0 for h¼ 0 ð14Þ

gðhÞ¼C0 þC


3
2

�
h
a

�
�1
2

�
h
a

�3�
for h < a ð15Þ

gðhÞ¼C0 þC for h� a ð16Þ

where: a is the range and corresponds to the intui-
tive idea of the range of influence of the regionalised
variables. Beyond this value, samples are no longer

Fig. 3. Basic architecture of BPNN.

Fig. 4. Spherical semi-variogram model.
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auto-correlated; C0 is the nugget variance and rep-
resents the random portion of variations of the
regionalised variables; C is the spatial variance and
is the predictable/structural part of the spatial
variance, and C þ C0 is the Sill.
The grade estimation model can be expressed in

the matrix form, as shown in Eq. (17) [86].

½C�½W�¼ ½D� ð17Þ

where:

½C�¼

2666666666664

s11 s12 : : : s1n 1

s21 s22 : : : s2n 1

: : : : : : :

: : : : : : :

: : : : : : :

sn1 sn2 : : : snn 1

1 1 1 1 1 1 0

3777777777775
; ½W � ¼

2666666666664

a1
a2
:

:

:

an
l

3777777777775
;

½D� ¼

2666666666664

sVv1
sVv2
:

:

:

sVvn
1

3777777777775
In matrix C, sij is the covariance between any

two data points i and j; from matrix D, sVvi is the
average covariance between a sample and the block
to be estimated, while matrix W, shows ai which is
the weight to be assigned to sample i.

2.4. Statistical evaluation tools

The efficiency of the predicted results of the
various models were compared based on their
Correlation Coefficient (R), Mean Square Error
(MSE), Mean Absolute Error (MAE), Coefficient of
Determination (R2) and Root Mean Squared Error
(RMSE) which are shown in Eqs (18)e(22)
[28,43,55,88,89].

MSE¼ 1
N

 Xn
i¼1

�
Zi �Z*

i

�2! ð18Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

 Xn
i¼1

�
Zi �Z*

i

�2!vuut ð19Þ

R2¼1�
Pn
i¼1

�
Zi �Z*

i

�2
Pn
i¼1

 
Zi � 1

n

Xn
i¼1

Zi

!2 ð20Þ

R¼
Pn
i¼1

�
Zi �Zi

��
Z*
i �Z

*

i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Zi �Zi

�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Z*
i �Z

*

i

�2
svuut ð21Þ

MAE¼
Pn
i¼1



Zi �Z*
i




N

ð22Þ

where: Z is the actual assay value obtained from
drilling; Z* is the predicted assay value; Zis the
mean of the actual grade; Z

*
is the mean of predicted

grade; n is the sample; and N is the total number of
samples.

2.5. Data preprocessing for model development

For good predictions using ANN, enough data is
required. This study adopted the popular hold-out
cross-validation technique commonly employed in
ANN modelling to divide the data [43]. As such,
the training data set should be larger than the
testing data set. Hence, 80% of the data repre-
senting 241 206 data points were used for training
the network, whereas the remaining 20% repre-
senting 60 301 data points were used for testing.
The data division was done randomly to prevent
bias. However, both divisions possessed similar
statistical characteristics to guarantee the models
generalisation ability to predict ore grade
accurately.
During the data preparation, the data sets were

first normalised. This was necessary because, the
grade values range between 0 and 2000 while the
coordinates range between �1600 to 13 700,
which fall in different ranges. Moreover, without
the data normalisation the large values (co-
ordinates) essentially influence the results due to
its more significant value but may not be more
important as a predictor. Therefore, the aim was
to change the values of the dataset to a standard
scale without distorting the differences in range
values and improving the model's validation ac-
curacy. In this research, the scaler applied
essentially scaled the data to range from �1 to 1.
The normalisation formula used is expressed in
Eq. (23) [90].
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pi¼pmin þ
�
pmax � pmin

�� �qi � qmin
�

qmax � qmin
ð23Þ

where: pi is the normalised data, qiis the actual drill
hole data, qmax and qmin are the maximum and
minimum values of the actual drill hole data with
pmin and pmax values set at �1 and 1, respectively.

3. Results and discussion

3.1. Models developed

3.1.1. ELM model for ore grade estimation
Based on the experimental results, the optimum

number of neurons for the developed ELM model
was 50. The five activation functions; sigmoid, hard
limit, sine, triangular basis and radial basis were
applied separately. The optimum ELM model had
three input nodes with a single hidden layer made
up of 50 hidden neurons and one output with
structure [3-50-1]. The three input variables were
the X, Y, and Z coordinates while the output was the
ore grade.

3.1.2. BPNN model for ore grade estimation
The input and output data sets used in the ELM

model was the same used to develop the BPNN
model. Three layers comprising input, hidden and
output layers made up the developed BPNN model.
As demonstrated in literature, a single hidden layer
is capable of approximating any complex problem
[82], hence, one hidden layer was employed in this
study. The hyperbolic tangent and linear transfer
functions were employed in the hidden and output
layers to capture both non-linearity and linearity
between the inputeoutput data. In training the

BPNN model, the LevenbergeMarquardt algorithm
was applied [91]. The best BPNN model obtained in
this research has three input nodes, ten neurons in
the hidden layer and a single output node, with the
structure [3-10-1].

3.1.3. OK model for ore grade estimation
As shown in Table 2 the grade distribution shows

positive skewness with possible outliers. Therefore,
there was the need to apply a top cut to minimise
the influence of outliers on the mean and the
skewness. The top cut value was based on the log
probability curves' (Fig. 5) analysis showing
inflexion at specific points, which indicate subpop-
ulation. Hence, the bottom cut value is shown to be
at 0.01 g/t, but due to the high-grade values in the
data, the top cut value is at 15 g/t. Since the deposit
is located in the Birimian, and due to the high-grade
records in that structure, geologists usually consider
the top cut value to be 12 g/t. However, in this
research, 15 g/t is considered the top cut value based
on the observed inflexion (Fig. 5).
Structural analyses were first performed on the

data. The experimental variogram was generated
using the exploratory data with a top cut value of
15 g/t. Based on the experimental points at various
lag distances, the variogram parameters were then
obtained. The nugget variance C0¼ 13.4, spatial
variance C¼ 9.4 and range a in the X, Y and Z di-
rections were 21.2, 15.03 and 72.54 respectively.
These were obtained as the model parameters from
the experimental variogram. The spherical model
was then superimposed onto the experimental var-
iogram based on the experimental variogram pa-
rameters (Fig. 6).

Fig. 5. Log probability plot for assay data.
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Based on the results obtained from the structural
analyses, ore grade estimation using OK was then
conducted. The performance of OK in the ore grade
prediction is summarised in Table 4 based on the
statistical evaluation tools.

3.2. Comparative analysis of ELM variants

In considering the dimensioned error statistic in-
dicators (MSE, MAE and RMSE) as shown in Table
3, it was observed that the estimation technique,
ELM-Sigmoid model obtained the lowest MAE,
MSE and RMSE values of 0.0175, 0.000524 and
0.022900 correspondingly. These results (MSE, MAE
and RMSE) were interpreted based on the rule of
thumb that states that, for a model to approximate
closely to the actual data, the error values are closer
to zero. The next technique that performed nearly as
well as ELM-Sigmoid was ELM-Sine which was

closely followed by ELM-Radial basis. The ELM-
Triangular basis performed fairly while the ELM-
Hard limit gave the poorest results.
The R2 (Table 3) indicates that the nearer the value

is to 1 or 100% the better the predicted results. In
effect this shows the extent the model applied could
explain the prediction variation level from the
model compared with actual data. It is observed in
Table 3 that the ELM-Sigmoid had the highest R2

value of 91.93%, followed by ELM-Sine, 87.91%. The
subsequent models: ELM-Radial basis; and ELM-
Triangular basis performed fairly with R2 values
measuring 68.86% and 55.69% while the ELM-Hard
limit performed poorly with R2 of 33.37%.
The statistical tool that measures the strength

between the relationship of two variables, i.e., actual
and estimated values is known as the correlation
coefficient R, and they fall within the range of �1 to
1. In effect it explains the level of prediction accu-
racy of the model. In Table 3, it is noticed that the
ELM-Sigmoid and ELM-Sine had R values
exceeding 0.9, making them perform better than the
other models, however, ELM-Sigmoid had the
highest R of 0.96. On the contrary, ELM-Radial basis
had R of 0.83 while that of ELM-Triangular basis
and ELM-Hard limit was 0.75 and below 0.6
respectively. The presented ELM test results are
further illustrated in Fig. 7 ((a)-(e)) for visual
observation. To this end, it can be stated that the
ELM-Sigmoid has demonstrated strong calibration
power and best generalisation on the training and
testing data with great adaptability as compared to
the other models.

Fig. 6. Directional variogram across strike at 600.

Table 4. Optimal train and test results.

Technique Train Test

Performance Criteria Performance Criteria

MAE MSE RMSE R2 R MAE MSE RMSE R2 R

OK 1.6473 7.0565 2.6564 0.5392 0.7343 1.6473 7.0565 2.6564 0.5392 0.7343
BPNN 0.0272 0.0022 0.0464 0.5725 0.7566 0.0555 0.0054 0.0735 0.2866 0.5354
ELM-Sigmoid 0.0172 0.0005 0.0229 0.9201 0.9592 0.0175 0.0005 0.0229 0.9193 0.9588

Table 3. Optimal train and test results for ELM variants.

Technique Train Test

Performance Criteria Performance Criteria

MAE MSE RMSE R2 R MAE MSE RMSE R2 R

ELM-Hard limit 0.0447 0.0043 0.0657 0.3432 0.5858 0.0448 0.0043 0.0657 0.3337 0.5777
ELM-Triangular basis 0.0176 0.0029 0.0539 0.5573 0.7465 0.0360 0.0029 0.0536 0.5569 0.7463
ELM-Radial basis 0.0320 0.0021 0.0454 0.6868 0.8287 0.0320 0.0020 0.0449 0.6886 0.8298
ELM-Sine 0.0209 0.0008 0.0285 0.8767 0.9363 0.0212 0.0008 0.0280 0.8791 0.9376
ELM-Sigmoid 0.0172 0.0005 0.0229 0.9201 0.9592 0.0175 0.0005 0.0229 0.9193 0.9588
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3.3. Performance evaluation of ELM-sigmoid with
other investigated techniques

The ELM-Sigmoid was the best performing model
out of the various ELM methods applied in this

study. Hence the ELM-Sigmoid is evaluated against
state-of-the-art methods of OK and BPNN. The
comparison (Table 4) aimed to determine if the
proposed ELM-Sigmoid technique could produce
comparable or superior results to those obtained

Fig. 7. Test results: (a) ELM-sine; (b) ELM-Sigmoid; (c) ELM-Hard limit; (d) ELM-Triangular basis; (e) ELM-Radial basis.

Fig. 8. Test results: (a) ELM-sigmoid, (b) BPNN and (c) OK.
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from the state-of-the-art established BPNN and OK
methods.
Comparatively, ELM-Sigmoid was superior over

BPNN and OK as it recorded the lowest errors and
had the best performing R2 and R values. BPNN had
MAE, MSE and RMSE of 0.0555, 0.0054 and 0.0735
whiles OK recorded 1.4127, 6.1599, and 2.4819
respectively. The ELM-Sigmoid had 0.0175, 0.0005,
0.0229, 0.9193, 0.9588 for MAE, MSE, RMSE, R2 and
R. A visual comparison of the various models based
on the actual and predicted grade values are shown
in Fig. 8. The interpretation is that the ELM-Sigmoid
model produced a better fitted values to the actual
ore grade data than the other methods. The strength
of the ELM-Sigmoid comes from the fact that there
is less manual tasking (human interference) and
minimum fine-tuning adjustable parameters in the
model development process. Moreover, optimum
predictions were achieved because the ELM tech-
nique is not gradient descent based type of algo-
rithm which can trap in local minima and therefore
produces global best solutions.

4. Conclusions

In this study, ELM has successfully been applied
in ore grade prediction of heterogeneous data sets.
Five variants of the ELM based on triangular basis,
radial basis, hard limit, sine and sigmoid activation
functions were developed and tested with data from
a mine in Ghana. The proposed ELM techniques
were then compared with state-of-the-art estab-
lished methods of BPNN and the conventional OK.
ELM-Sigmoid model generated comparable grade
predictions similar to the actual grade values than
the other models applied. Thus, the ELM-Sigmoid
gave the lowest MAE, MSE and RMSE values of
0.0175, 0.0005 and 0.0229 and highest R2 and R of
0.9193 and 0.9588 respectively. Based on the results
obtained, it was decided that the proposed ELM-
Sigmoid model has shown encouraging application
potential in ore grade estimation and therefore
serve as a suitable alternative to the established
BPNN and OK models employed in this research.
The proposed ELM-Sigmoid model's efficiency was
attributed to its inherent ability to randomly select
its weights and biases, faster computational speed,
less manual tasking in the model development and
producing global minimum solutions because it is
not a gradient descent type of algorithm where it
can trap in local minima.
The developed model for the studied Mine could

be adopted as an alternative ore grade estimation
tool since OK method which is usually employed
produced poor estimates due to the heterogeneous

nature of the deposit. Furthermore, the proposed
methodology can definitely be replicated for other
deposits. This is because it has proven to possess
excellent generalisation ability and self-adaptive
characteristic feature where it can automatically
learn on any given dataset from any Mine.
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