
the orebody and host rock e immediately adjacent to
the openings.

3.2. Weak and strong greenstone formation

3.2.1. Active level L1520
Two additional simulations were run where the

greenstone formation was provided with weak and
strong rock mass properties to assess the impact of
their variations on instability. All the other geologic
formations, including the orebody, retained their
initial average properties, as indicated in Table 1.
Fig. 6 presents a graphic comparison of the ore at
risk with the three sets of properties for the green-
stone formation on L1520, while Fig. 7 does the same
for the footwall and hanging wall sides.
In the case of the orebody, it is clear that a weak

host rock induces further instability in the stope
pillars. This is to be expected because the stresses
would be transferred from the less competent

greenstone formation into the orebody and thus in-
crease the volume of ore with a BSR above 0.7. On the
other hand, a stronger host rock would attract
elevated stresses and relieve the orebody, causing
the total volume of ore at risk to decrease. It can also
be observed that the largest difference of ore at risk
on this level occurs in stage 12, with a 33,000 m3

change in volume between weak and strong host
rock formations. This is the time when extended
pillars are formed from L1580 to L1430, and a weak
host rock would imply stress shedding to these pil-
lars. In addition, the chart informs the ground con-
trol team that the most significant impact of these
differences in rockmass properties lasts during stage
10e16. Once the total actual time required to extract
the mining block is determined, it can easily be
calculated how long this maximum impact, which is
spread over seven stages, will last in real time.
Fig. 7 presents the impact of variations on insta-

bility in the footwall and hanging wall on this same

Fig. 5. Volume of rock mass with BSR > 0.7 on various levels (a) in the footwall and (b) hanging wall within the greenstone formation.

Fig. 6. Volume of orebody with BSR > 0.7 on L1520 with varying host rock mass properties.
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active level. It can be observed that the maximum
volumes in the range of 16,500 m3 here are much
less than the 70,500 m3 determined in the orebody.
However, there are several differences in the volu-
metric trends for the footwall and hanging wall.
Firstly, both the average and strong greenstone
properties generate a relatively minor volume of
instability there with a maximum of 5500 m3

compared to 16,500 m3 for weak properties. Sec-
ondly, it would be expected that if weak host rock
properties increased instability in the orebody by
transferring induced stresses there, they would also
decrease the rock mass volume at risk in the
greenstone formation.
The explanation for this second observation is

relatively simple once it is recalled that the BSR is
the ratio of deviatoric stress (s1es3) to the uncon-
fined compressive strength (UCSi) of the intact rock.
Hence, its value is dependent on both the induced
stresses in the numerator and the UCSi value in the

denominator. If stresses are shed to another for-
mation and increase slightly there, the BSR could
still decrease if the UCSi value increases significantly
in the denominator. In Table 1, the average UCSi of
the host rock is 178 MPa, which decreases to
101 MPa for the weak alternative and increases to
268 MPa for the strong one. Since the BSR is
dependent on both the deviatoric stress and UCSi, it
would be instructive to examine their impacts
separately. The former can be evaluated by
plotting the maximum shear stress, which is simply
(s1es3)/2, and the latter can be read from Table 1, as
explained below.

3.2.2. Overall instability
Before further analysis into the BSR increase in

both the orebody and the host rock, the impact of
weak and strong properties in the latter should be
examined on the overall instability trends. Fig. 8
plots the volume of ore at risk for active levels and

Fig. 7. Volume of rock mass with BSR >0.7 on L1520 (a) in the footwall and (b) hanging wall with varying host rock mass properties.

Fig. 8. Volume of orebody with BSR > 0.7 in the entire mining block with varying host rock mass properties.
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sill pillars for the three sets of properties in the
greenstone formation. The trend is almost the same
as the one for L1520 in Fig. 6, with the weak host
rock inducing maximum instability in the orebody
and the largest volumetric difference e almost
150,000 m3 e observed in stage 12. However, since
the chart also plots the ore at risk on L1580 and
L1430, the volumes do not converge to zero in stage
24 but move towards values between 133,000 and
193,000 m3 in the end.
The trend in the overall host rock at risk is plotted

in Fig. 9. It shows similarities to the one for L1520 in
Fig. 7. Once again, the average and strong proper-
ties result in minimal volumes of rock mass at risk
while the weak ones generate a continuously
increasing trend with a maximum value of 110,000
to 142,000 m3 in the footwall and hanging wall,
respectively.
With the confirmation of larger volumes of insta-

bility in both the orebody and the host rock for the
weak greenstone properties in the entire mining
block, it is obvious that this is not an isolated result

that occurs on L1520 only. Hence, by plotting the
maximum shear stress and the volume of rock mass
above a BSR of 0.7, the individual contributions of
induced stresses and the UCSi of the rock can be
assessed. In Table 1, the average laboratory strength
of the greenstone formation is given at 178 MPa.
Since the BSR is a ratio of deviatoric stress to UCSi, it
can easily be calculated that the former would need
to be 124.6 MPa for a 0.7 threshold. The maximum
shear stress is half the deviatoric value, which would
therefore be 62.3 MPa for average greenstone for-
mation properties. By comparing the zones above
a maximum shear stress of 62.3 MPa for the weak
and strong greenstone simulations, the individual
contributions of the rock mass properties and UCSi
towards the BSR value can be assessed. Specifically,
induced stresses and volumes of BSR above 0.7 can
better be understood when compared to the average
baseline properties in the initial simulation. Fig. 10a
presents the maximum shear stress readings in the
orebody in stage 16 for weak greenstone properties,
and Fig. 10b indicates the volume of footwall and

Fig. 9. Volume of rock mass with BSR >0.7 in the entire mining block (a) in the footwall and (b) hanging wall with varying host rock mass properties.

Fig. 10. Maximum shear stress for weak greenstone properties (a) in the orebody (front view) and (b) above 62.3 MPa (dark surfaces) in the footwall
and hanging wall (side view) in stage 16.
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hanging wall with a maximum shear stress of
62.3 MPa for the same conditions. The latter trans-
lates into deviatoric stress of 124.6 MPa and,
compared to the weak UCSi value of 101 MPa, re-
sults in a BSR of 1.24. From the scale in Fig. 10a, the
maximum shear stress in the orebody on L1520 can
be approximated to be above 50 MPa, and the vol-
ume of host rock above 62.3 MPa appears to be
minimal in Fig. 10b.
Fig. 11a and b presents the same results in stage 16

for strong greenstone properties. The maximum
shear stress on L1520 in the orebody can once again
be approximated to be above 50 MPa (Fig. 11a),
which is not significantly different from the previous
case. However, regions of the greenstone formation
above 62.3 MPa in maximum shear stress are much
more voluminous in that they envelop the orebody
from the footwall and hanging wall sides (Fig. 11b).
In this case, with a UCSi of 268, the BSR in these
areas is 0.47.
The strong properties of the host rock channel

induced stresses towards the footwall and hanging
wall, and away from the orebody, which is to be
expected. This is clearly seen in Fig. 11, with volu-
minous regions of 62.3 MPa in maximum shear
stress and slightly lower readings in the orebody. In
Fig. 10, the orebody attracts higher shear stresses
due to the weak nature of the host rock that exhibits
only localized regions of 62.3 MPa. The paradox of
the host rock having more voluminous regions of
stress-based instability with weak properties can
once again be explained by the UCSi used in the BSR
formula. Zones in the footwall and hanging wall
with a relatively high maximum shear stress of
62.3 MPa are minimal, but the BSR volumes are high
because a UCSi of 101 MPa is being used for its
assessment. On the other hand, maximum shear

stresses of 62.3 MPa are abundant when strong
greenstone properties are used, but the BSR vol-
umes are low as a UCSi of 268 is considered in the
formulation. This underscores the importance of
fully understanding the concepts behind a given
instability criterion and the parameters to which it is
sensitive.

4. Conclusions

Variations in rock mass properties are an inherent
part of structural geology in underground mines.
There is abundant literature on methods whereby
these can be analyzed, and representative values
selected for design purposes or as input for nu-
merical models. There are also practical approaches
whereby the impact of these variations on instability
at locations of interest can be evaluated. In this
study, a typical tabular orebody in the Canadian
Shield is modelled in 3D, and the impact of varia-
tions in the host rock is assessed quantitively on the
orebody, footwall, and hanging wall using the
“brittle shear ratio” (BSR). It is observed that the
volume of ore at risk moves sequentially from one
active level to another until all four levels are
completely mined, at which point instability moves
into the bottom and top sill pillars. The volume of
rock mass at risk in the footwall and the hanging
wall is much less than in the orebody, but it remains
in place even after the mining block has been
completely extracted. The charts presenting the re-
sults can indicate when, where, and how long
instability will be present, allowing ground control
measures e such as enhanced support e to be
implemented. When the rock mass properties of the
greenstone host rock formation are weak, elevated
stresses are shed to the orebody and increase the

Fig. 11. Maximum shear stress for strong greenstone properties (a) in the orebody (front view) and (b) above 62.3 MPa (dark surfaces) in the footwall
and hanging wall (side view) in stage 16.
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volume of ore at risk there. However, the volume of
footwall and hanging wall at risk also increases due
to a lower compressive strength value being used in
the BSR formula. When the greenstone formation is
allocated strong properties, the volume of ore at risk
diminishes due to stresses moving into the host
rock. The volume of footwall and hanging wall at
risk also becomes smaller because of a higher
compressive strength value used in the BSR for-
mula. In future studies, the authors will examine the
impact of variations in the orebody and other
geologic formations to develop a comprehensive
overview of their impact on instability in the ore-
body, footwall, and hanging wall.
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