Influence of explosive maximum instantaneous charge on blasting environmental impact

Author(s) ORCID Identifier:
Olukemi Yetunde Odeyemi: 0000-0002-0922-2561
Blessing Olamide Taiwo: 0000-0002-6168-1300
Olarewaju Alaba: 0000-0002-2534-8551

Follow this and additional works at: https://jsm.gig.eu/journal-of-sustainable-mining
Part of the Explosives Engineering Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons

Recommended Citation
Odeyemi, Olukemi Yetunde; Taiwo, Blessing Olamide; and Alaba, Olarewaju (2023) "Influence of explosive maximum instantaneous charge on blasting environmental impact," Journal of Sustainable Mining: Vol. 22 : Iss. 4 , Article 6.
Available at: https://doi.org/10.46873/2300-3960.1398

This Research Article is brought to you for free and open access by Journal of Sustainable Mining. It has been accepted for inclusion in Journal of Sustainable Mining by an authorized editor of Journal of Sustainable Mining.
Influence of explosive maximum instantaneous charge on blasting environmental impact

Abstract
Our research looked at the effect of explosive maximum instantaneous charge on ground vibrations and noise levels during blasting operations at the Calaba limestone quarry in Nigeria. Vibrock (V9000) seismograph was used to take readings related to ground vibrations and noise generated during all blasting operations that took place in the quarry for a period of one year. The results obtained indicate that the average ground vibration readings fall between 0.25mm/s to 3.6mm/s and the average noise decibel generated during the blasting operations between 35 to 158 dB. An artificial neural network (ANN) model is developed in this study for the prediction of blast-induced ground vibration and noise level. The proposed ANN model was compared with existing empirical models and was found to give the highest prediction accuracy. It was revealed that both noises generated and ground vibrations during all blasting operations increase with an increase in explosive maximum instantaneous charge. Additionally, the measuring equipment distance from the blast site was also revealed to have a negative correlation with noise generated and ground vibrations.

Keywords
blasting, explosive energy, blast ground vibration, maximum instantaneous charge, seismograph

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Influence of explosive maximum instantaneous charge on blasting environmental impact

Olukemi Y. Odeyemi, Blessing O. Taiwo*, Olarewaju C. Alaba

Federal University of Technology Akure, Mining Engineering, Nigeria

Abstract

Our research looked at the effect of explosive maximum instantaneous charge on ground vibrations and noise levels during blasting operations at the Calaba limestone quarry in Nigeria. Vibrock (V9000) seismograph was used to take readings related to ground vibrations and noise generated during all blasting operations that took place in the quarry for a period of one year. The results obtained indicate that the average ground vibration readings fall between 0.25 mm/s to 3.6 mm/s and the average noise decibel generated during the blasting operations between 35 and 158 dB. An artificial neural network (ANN) model is developed in this study for the prediction of blast-induced ground vibration and noise level. The proposed ANN model was compared with existing empirical models and was found to give the highest prediction accuracy. It was revealed that both noises generated and ground vibrations during all blasting operations increase with an increase in explosive maximum instantaneous charge. Additionally, the measuring equipment distance from the blast site was also revealed to have a negative correlation with noise generated and ground vibrations.

Keywords: blasting, explosive energy, blast ground vibration, maximum instantaneous charge, seismograph

1. Introduction

Blasting operations are commonly used in many quarries to liberate in-situ rock mass and ensure material availability [1]. The blasting operation is carried out by drilling holes of varying diameters and lengths and filling these holes with a blasting agent of choice. According to Jhanwar [2], the primary goal of this operation is to provide enough energetic wave energy to cause the fracturing of rock mass into smaller sizes. Explosives energy is rated in a variety of ways, obtained either from calculation or from experimental tests. However, the questions of what amount of that explosive energy is transferred to the rock for fragmentation and what fraction of it is converted into efficient work in the usual mining application of rock blasting remain largely undefined. Although the measurement of some of the effects of the explosive excess energy usage has been explained to be for vibration, fragmentation and rock movement, they are usually conducted for blast control purpose, and the results are usually important to ensure a sustainable blasting environment. According to Bhandari 2013, blasting operation generates a nuisance effect if more fine fragments are produced and then when more dust is dispersed under explosion. When large amounts of fugitive dust are released into the environment uncontrollably, they can cause widespread nuisance and potential health concerns for on-site personnel and surrounding communities. Though the blasting dust plume is raised for a few minutes, the majority of the dust settles in and around the mining area, and some of it is dispersed before it settles. Depending on the explosive maximum charge quantity and the meteorological conditions, dust dispersal can travel long distances, endangering community health. The amount of fines and dust generated during blasting is determined by the type of explosives used and how they are charged in the hole. The blasting operation involves the detonation of a specific explosive quantity to fragment in-situ and oversize rock blocks for particle reduction [3]. A production blast is executed by drilling a series of blast holes into the rock mass and filling them with explosive

* Corresponding author.
E-mail address: taiwoblessing199@gmail.com (B.O. Taiwo).

https://doi.org/10.46873/2300-3960.1398
2300-3960© Central Mining Institute, Katowice, Poland. This is an open-access article under the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).
materials confined by stemming and confining material. Rock blasting causes ground shock and vibration, which can damage nearby structures [4]. Because of the increased threat from various man-made activities, the minimization of blast-induced effects on natural and man-made structures has received considerable attention in recent decades [5,6]. The need to improve the environment of current mining areas, which are becoming increasingly difficult to manage due to the use of excessive explosive powder, has given rise to the need to study the response of blast damage and to build a soft computing mathematical model for the prediction of blast effect, allowing management personnel at various levels to control the ground vibration and blast-induced noise level, all with the goal of improving environmental safety performance. The most important parameters to investigate in air shock studies, according to Deniz and Deniz [7], are the amount of explosives used per delay time and the distance to the measuring station. This work proposed an artificial intelligence-based model for blast environmental impact that will guide mining engineers in mining companies and aid quarries and mines operators in promoting sustainable blasting practices. The first section of this paper examines the rock’s moisture content and strength condition as a relationship factor, while the second section investigates the level of blast-induced ground vibration and noise generated by the mine operation to determine the environmental safety level relative to the standard threshold. In addition, the paper investigates the effect of maximum instantaneous charge and measuring instrument placement on blast-induced ground vibration and noise level in the case study limestone mine. As noted in the literature, generated blast-induced impact is dependent on the explosive charge per delay. This study also employs an Artificial Neural Network (ANN) approach based on field study results to mitigate the risk of blast-induced ground vibration and noise. Blast operation was monitored to measure blast-induced ground vibration and noise. The field test results for blast charge rate and observation distance will be used as input parameters in the proposed models, with blast impact as the desired output.

1.1. Description of the study area

A field study was conducted at a limestone quarry in Calaba to achieve the goal of this study. The study area’s geology consists of intercalated limestone and marl layers underlain by limestone

Fig. 1. Geological map of the case study area (modified after Unicem geological field mapping operation).
and dolomite from the Mfamosing formation, all of which date from the middle Albian to the early Cenomanian. As shown in Fig. 1, the limestone deposit in the case study quarry site outcropped in a valley with an approximate area cover of 779,140 m². The lowest and highest points on the ground are 20 and 50 m, respectively. The limestone quarry site’s coordinates are 560,962 N and 448,015 E.

2. Literature review

According to Ainalis et al., explosive charge detonation involves a rapid and stable chemical reaction that travels through the explosive charge at its Velocity of Detonation and produces very high temperature and density gases [8]. They found that during blast charge detonation, the detonation velocity can range from 1500 to 9000 m/s, with equivalent detonation pressures ranging from 1 to 14 GPa. The explosive charge detonation process during rock blasting involves two distinct phenomena [9,10]. Cullis first explained that the rapid detonation of explosives creates a supersonic shock wave that travels through the explosive charge and causes rock fragmentation [11]. Second, the high-pressure gas that follows the shock wave enters the surrounding rock mass via existing or newly formed fractures. According to Resende et al., explosive shock waves are short-duration (a few milliseconds) waves that cause the blast hole to rapidly expand and contract, imparting pressure waves into the surrounding medium [12].

Dumakor-Dupey et al. [13] explained the utilization of explosive energy released during blast initiation. They noted that 70–80% of the explosive energy released produces undesirable outcomes, while 20–30% is used to fragment and throw rock material. The 70–80% explosive energy generates ground vibration, airblast/air overpressure, noise, heat, dust, and flyrock, among other undesirable outcomes. According to Jaffar et al. [14], vibration is the back-and-forth or repetitive motion of an object from its point of rest. When a force is applied to a mass, the particle constituents that make up the mass vibrate in response to the force [15]. When the force is removed, the particles’ stored energy causes them to move upward through the position of rest to the upper elastic limit [14,15]. When a particle reaches its upper elastic limit, its mass comes to a halt and reverses direction, returning to the lower elastic limit via the position of rest [15]. Geometric spreading and frictional loss are the primary causes of vibration [16]. The decrease in vibration caused by the non-elasticity of rock and rock structure is dictated by frictional loss. Bansah et al. [17] also noted that ground vibrations and airblast resulting from blasting induce new cracks and also expand existing cracks which alter the stability of building and engineering structures. Airblast overpressure is an unavoidable byproduct of any blasting, with the primary components being vibration and venting. The overpressure is also linked to the formation of fly rock. Ground vibration is a technical term that describes mostly man-made vibrations of the ground, as opposed to natural vibrations studied by seismologists. Such vibration consists of that resulting from explosions, construction works, and railway and road transport [18]. The amount of vibration generated during a blasting operation is determined by the amount of explosive charge detonated per delay.

The work of Valdivia et al. and Rossmanith et al. revealed the importance of several variables whose changes can influence vibration reduction and blasting operation improvement [19,20].

Bhandari distinguished between controllable and uncontrollable factors influencing vibrations [21]. Controllable factors such as blast geometry, explosive type, steaming, priming, and initiation were also mentioned to influence blast fragmentation [3]. Other factors influencing ground vibration during blasting include rock strength, number of blast holes, and measuring distance to the blast site, to name a few. Production blasts are a complex phenomenon, with many factors influencing their performance and subsequent ground vibrations. The various blasting factors that have a minor and major influence on ground vibration during blast operation are presented by Banadaki and Mohanty (see Table 1) [22].

In their paper, Alessandro et al. presented Eq. (1) as a relationship between the blasting parameter and PPV [23].

\[t_{\text{det}} = \frac{N \cdot L}{VOD} \]

Where \(N \) is the number of explosive cartridges in the boreholes, \(L \) is the length of each cartridge in mm, and \(VOD \) is the velocity of detonation.

\[cpd = N \cdot L \cdot \phi^2 \cdot \frac{\pi}{2} \cdot \rho_e \]

Where \(\phi \) is the charge diameter (mm); \(\rho_e \) is the explosive density in kg·m⁻³.

From Eq. (2), Eq. (1) for calculating PPV becomes Eq. 3.
Eq. (3) shows that PPV does not depend only on the charge per delay (cpd), but also on VOD. The properties of detonated explosives, in addition to an explosive weight initiated per delay, are very important in determining the vibration behavior of soils in a blast environment. Mpofu et al. also provide a thorough investigation into the various blasting parameters that influence ground vibration and air blast [24]. Uniaxial Compressive Strength, unit weight, density, Rock Quality Designation, and Geological Strength Index are some of the geotechnical properties that influence blasts to induce noise and vibration, according to Ranjan et al. [25]. Roy et al. [26] investigated the effect of Young’s modulus and P-wave velocities on PPV. They unearthed that higher P-wave velocity causes more ground vibration and that higher Young’s modulus rock has less attenuation, resulting in energy loss and an increase in ground vibration. For a long time, one of the methods used to reduce blast instantaneous charge weight in mines and quarries has been air decking. Cheng et al. investigated the effects of an axial air deck in a borehole on blast-induced ground vibrations. Nonetheless, the effect of maximum instantaneous charge on the most dangerous blast-after effect, blast-induced fly rock and ground vibration has not been clarified [27]. Several researchers also focused on the application of prediction techniques in improving blasting operation and minimizing blast-induced ground vibration and noise level, including [28–33].

3. Materials and methods

According to Etikan and Bala, purposeful sampling was used to collect representative samples from the case study limestone deposit. The case study rock formation yielded cylindrical core samples [33]. The moisture content, density, and uniaxial compressive strength (UCS) of the case study rock formation were determined using cylindrical samples. The testing machine used was a Riedligen (made in Germany) capable of loading up to 3000 kN at a rate that met the International Society of Rock Mechanics (ISRM) requirement [34]. The maximum instantaneous charge of each blast round was calculated per hole and multiplied by the total number of holes. The sequence of distribution of the detonating device is generated, and the firing sequence of each blast round was obtained, as shown in Fig. 2. The sequence with the largest number of holes was identified. The kilogram (kg) of explosives per hole was measured. The Maximum Instantaneous charge of each blast round was obtained using Eq. (4):

\[
MIC = N \cdot W
\]

Where \(N \) is the total number of instant holes blasted per delay, \(MIC \) is the maximum instantaneous charge in kg, and \(W \) is the explosive charge per hole.

Lafarge Cement Company (LCC) quarry is located in Calabar, Cross River State, and south-eastern Nigeria. The limestone quarry pits lie within latitude 5°4’39” and longitude 8°31’54”.

Table 1. List of various factors and their influence on ground vibration from [8].

<table>
<thead>
<tr>
<th>Factor</th>
<th>Ground motion influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors within operator’s control</td>
<td></td>
</tr>
<tr>
<td>Charge weight per delay</td>
<td>Yes</td>
</tr>
<tr>
<td>Delay interval</td>
<td>Yes</td>
</tr>
<tr>
<td>Burden and spacing</td>
<td>Yes</td>
</tr>
<tr>
<td>Amount of stemming</td>
<td>Yes</td>
</tr>
<tr>
<td>Types of stemming</td>
<td>Yes</td>
</tr>
<tr>
<td>Charge length and diameter</td>
<td>Yes</td>
</tr>
<tr>
<td>Charge depth</td>
<td>Yes</td>
</tr>
<tr>
<td>Angle of blast hole</td>
<td>Yes</td>
</tr>
<tr>
<td>Direction of initiation</td>
<td>Yes</td>
</tr>
<tr>
<td>Charge weight per delay</td>
<td>Yes</td>
</tr>
<tr>
<td>Charge confinement</td>
<td>Yes</td>
</tr>
<tr>
<td>Factors out of site operator’s control</td>
<td></td>
</tr>
<tr>
<td>General surface terrain</td>
<td>Yes</td>
</tr>
<tr>
<td>Overburden type and depth</td>
<td>Yes</td>
</tr>
<tr>
<td>Wind and weather</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\[
PPV = \left[\frac{2 \cdot D^2 \cdot VOD^2}{N \cdot L \cdot \phi^2 \cdot (\pi \cdot \rho_c)^2} \right]^n
\]
blasts. Blast hole diameter ranges from 11.3 cm (4.5 inches) to 15 cm (6 inches). Other parameters of includes benches include burden = 6.5 m, spacing = 8.5 m, stemming length = 3 m, and sub drilling = 2 m. The explosive charge is ANFO, while Ammonia Gelatin dynamite has been used as priming, bottom, and boosting charges. The initiation type is a NONEL system in one row with a 25 ms surface delay interval. Understanding the responses of the blast effect due to explosive charge weight will assist in improving blast environmental sustainability and also enhance the safety of workers and mine machines.

To address this issue, seventy-five (75) full-scale production blasts covering one-year operations were considered in this study, with the number of blast holes per blast ranging from 30 to 62. The weight of the charge per delay ranged from 60 kg to 90 kg and the total charge weight per blast ranged from 580 kg to 1600 kg. The distance between the seismograph’s locations to the center of the blast ranged from 128 to 1025 mm. The instruments used include one Vibrock (V9000) seismograph system (2 kg boxed weight) with an internet-based remote and GSM feature (see Fig. 3). The Vibrock V9000 seismograph is a completely independent unit. Seismographs have been used to record the ground vibrations and resultant peak noise during each blast. Distance from each seismograph location to the center of the blast has been measured in accordance with Stagg and Engler [35]. The results generated are interpreted and presented quantitatively and qualitatively using graphs; geotechnical parameters are correlated with measured noise and vibration to ascertain the effect of geology on noise and vibration. The study stepwise flow sheet is shown in Fig. 4 with the proposed sustainable model approach.

3.1. Artificial neural network (ANN) for the predictions of blast-induced impact

Adjusting the weights and biases of a trained ANN network is part of the process of making it more accurate. The correct weights and biases of the ANN model are typically determined using a number of methods. In this work, we used a hybrid algorithm with two transfer functions to train a network to its maximum potential (trainbr and trainlm). The proposed model was created with the help of 75 blast data samples gathered from in-field observations. To ensure that the models produced by these data sets were as accurate as possible, the dataset was normalized. When training the ANN model, datasets were arbitrarily split into three groups. In order to train the ANN model, 80% of the datasets were used, while the remaining 10% were

Fig. 2. Typical firing pattern used in the case study blasting operation.

Fig. 3. Seismograph in position for noise and vibration measurement.
used for testing and validation. The ANN model was developed using MATLAB. In order to train the model network, we utilized hybrid, Bayesian, and Levenberg-Marquardt algorithms. Using the guidelines cited by Lawal et al. [36], a series of linear mathematical equations will be derived to represent the hybrid optimum model.

3.2. Analysis of the optimum MIC blast production sustainability with WipFrag software

In order to digitalize the contents of images, state-of-the-art image-based gravimetry image processing software, such as WipFrag, uses the grayscale technique [37]. WipFrag software was used to analyze six blast images taken from blast rounds designed with the proposed optimized MIC using the developed model. This allowed for the measurement of the blast fragment size distribution. All of the blast photos were taken using WipFrag’s methods [38].

4. Results and discussion

The study was conducted using seventy-five production blasts involving the monitoring of the blast maximum instantaneous charge, ground vibration, and peak noise level.

4.1. Rock strength characteristics results

Table 2 presents the uniaxial compressive strength, density, and moisture content results of the three tests and the average value of the rock formations in the case study area. The Limestone formation as identified by the UCS result, has high strength with an average value of 90 MPa; the limestone is classified as strong limestone according to Bieniawski’s [39] rock UCS rating. The formation has average moisture content and density value of 8.8 and 2.41 kg/m³, respectively. Fig. 5 shows the relationship between the limestone formation strength and water content.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Moisture content</th>
<th>Density (kg/m³)</th>
<th>UCS (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>2.36</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>9.5</td>
<td>2.46</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>2.4</td>
<td>99</td>
</tr>
<tr>
<td>Average</td>
<td>8.8</td>
<td>2.41</td>
<td>90</td>
</tr>
</tbody>
</table>

Fig. 5. Relationship between limestone UCS and moisture content.

Fig. 4. A flowchart of the research work.
Rock moisture content is the key factor determining the mine water infiltration rate. Low water content rock support the quick migration of mine water from the pit into the environment, which results in soil contamination in case of acid mine drainage [40]. The result of this study revealed that a positive correlation exists between limestone moisture content and strength property, with a continuous increase in moisture content percentage as the rock strength increases.

4.2. Result of maximum instantaneous charge, noise and ground vibration measured from the limestone quarry

The statistical analysis result of the measured and evaluated parameters obtained during field measurement is shown in Table 3. The average and range of the evaluated blasting resultant maximum instantaneous charge in the Limestone blast site, as well as the measured noise and ground vibration from the blasting operation using the Seismograph, were presented. The results show that the maximum initiated explosive charge, noise level, and ground vibration in the blast site range from 580 kg to 1600 kg, 35 dB–158 dB, and 0.25 mm/s to 3.6 mm/s, respectively. The obtained readings from the case study blast site are higher than the limits set by the Federal Environmental Protection Agency (FEPA) of 5.0 mm/s and 150 dB [41]. The readings were higher when compared with the result of the Ewekoro blasting operation as measured by [41]. The noise level was noted to fall beyond the permissible limits, which require adjustment so as to prevent damage to mine humans and contribute to metrological conditions such as wind speed and dust dispersion [42]. Machine learning modelling approach using an artificial neural network approach will be applied in section 4.3.1 to minimize the blast-induced noise level below the FEPA threshold.

4.3. Relationship between generated limestone blast noise level, the measuring equipment distance and MIC

To make proper adjustments to the blasting operation at the mine, this section proposes a linear and artificial intelligence-based mathematical equation for the prediction and optimization of blast-induced ground vibration and noise level. The relationship between maximum instantaneous charge weight, measuring equipment distance, and generated blast induced noise level is shown in Fig. 6. Considering the result, it was observed that blast-generated noise and the maximum instantaneous charge have a positive correlation (Fig. 6a). Additionally, it was also observed that the maximum instantaneous charge weight increases with increase in the level of blast-induced noise as shown in Fig. 5a. This result was noted to be a result

Table 3. Measured dataset statistics.

<table>
<thead>
<tr>
<th>MIC (kg)</th>
<th>Distance to instrument (m)</th>
<th>Noise (dB)</th>
<th>Ground vibration (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>1600</td>
<td>1025</td>
<td>158.1</td>
</tr>
<tr>
<td>Min</td>
<td>580</td>
<td>128</td>
<td>35.74</td>
</tr>
<tr>
<td>Mean</td>
<td>1312.467</td>
<td>384.16</td>
<td>123.76</td>
</tr>
<tr>
<td>Mode</td>
<td>1500</td>
<td>262</td>
<td>146.14</td>
</tr>
<tr>
<td>variance</td>
<td>46,110.47</td>
<td>36,216.703</td>
<td>6.551</td>
</tr>
<tr>
<td>standard deviation</td>
<td>214.733</td>
<td>190.306</td>
<td>2.559</td>
</tr>
</tbody>
</table>

Fig. 6. Relationship between the measure blasts generated noise and (a) instrument distance to blast site, and (b) MIC.
of the increase in the energy released by the charge weight at detonation due to the increased powder factor [43].

Fig. 6b shows that a negative correlation exists between the generated noise measured and the distance of the measuring instrument to the blast site. Fig. 5b also reveals that as the measuring distance increases the level of noise decreases. The blasting operation generated noise was found to be below the FEPA threshold level, making it safe for human occupation within the operating radius. Eqs. (5) and (6) express the linear relationship between the noise generated by a blast, the observation distance, and the maximum instantaneous charge per blast round, with R^2 values of 0.87 and 0.98, respectively.

$$N = -0.134 \cdot D + 175.4$$ \hspace{1cm} (5)

$$N = 0.12 \cdot \text{MIC} - 33.9$$ \hspace{1cm} (6)

Where: MIC is the maximum instantaneous charge in kg, N is the noise level in dB, and D is a distance of the instrument to the blast site in m.

4.3.1. Developed blast-induced noise ANN model

Revealing that the noise level generated from the case study mine is above the safety threshold level, as shown in section 4.2, the ANN model with 2:3:1 architecture was built based on the approach explained in section 3.1 using a hybrid algorithm. Fig. 7 presents the prediction regression for both the training and testing dataset. The model with $R^2 = 0.998$ and $MSE = 0.474$ was adopted for blast-induced noise prediction and obtaining the optimum charge weight per drill hole based on the MIC and the maximum safety distance. The blast-induced noise formula is found in Equations (7)–(10) by the best ANN model, where the R^2 values are 99.91% and 99.8% for the training and testing dataset, respectively. The proposed model was found suitable for predicting the noise level in a limestone quarry for pre-blast design.

$$N = 61.2 \tanh \left(\sum_{i=1}^{4} X_i + 0.842704 \right) + 96.94$$ \hspace{1cm} (7)

$$X_1 = -1.01353 \tanh \left(-2.338 \text{MIC} - 0.96064D + 2.248951 \right)$$ \hspace{1cm} (8)

$$X_2 = 0.641155 \tanh \left(-2.23583 \text{MIC} + 0.72424D - 0.28067 \right)$$ \hspace{1cm} (9)

$$X_3 = 0.30836 \tanh \left(1.217995 \text{MIC} - 2.05348D + 2.43614 \right)$$ \hspace{1cm} (10)

4.4. Relationship between generated limestone blast ground vibration, measuring distance and MIC

Fig. 8 shows the relationships between the blasts’ induced ground vibration, MIC, and the distance of
the measuring instrument to the blast site. The ground vibration at the limestone quarry decreases with an increase in the instrument setup distance (See Fig. 8a), expressing a continuous decrease in the induced ground vibration with distance in relation to Zhi-qiang Yin et al. and Mesec et al. findings [44,45]. Fig. 8b shows the relationships between the blasts that induce ground vibration and the blast maximum instantaneous charge (MIC). The ground vibration level shows an increasing trend with an increase in the maximum instantaneous charge initiated at once in the blast site. The result shows that the rate of ground vibration depends on the explosive energy usage in the quarry, which also depends on the MIC.

Eqs. (7) and (8) shows the linear relationship between the MIC, blast site distance and ground vibration measured. The obtained R^2 values are 0.97 and 0.89, respectively; it is suitable for predicting the blast-induced ground vibration in a limestone quarry.

$$GV = 0.003 \cdot MIC - 2.218$$ \hspace{1cm} (7a)

$$GV = -0.004 \cdot D + 4.083$$ \hspace{1cm} (8a)

Where: GV is the ground vibration in mm/s, MIC is the maximum instantaneous charge in kg, and D is the distance of the instrument to the blast site in m.
4.4.1. Developed blast-induced ground vibration ANN model

ANN model with 2:4:1 architecture was built based on the approach explained in section 3.1 using a hybrid algorithm. Fig. 9 presents the prediction regression for both the training and testing dataset. The model with \(R^2 = 0.998 \) and \(MSE = 0.00207 \) was adopted for blast-induced noise prediction and for obtaining the optimum charge weight per drill hole based on the MIC and the maximum safety distance. The blast-induced noise formula is found in Equation (11)–(15) by the best ANN model, where the \(R^2 \) values are 99.99% and 99.8% for the training and testing dataset, respectively. The proposed model was found suitable for predicting the noise level in a limestone quarry for pre-blast design.

\[
GV = 1.699 \tanh \left(\sum_{i=1}^{4} X_i + 0.22861 \right) + 1.949 \quad (11)
\]

\[
X_1 = 0.2905 \tanh (2.3050 \times MIC - 1.3936D - 2.7163) \quad (12)
\]

\[
X_2 = 0.255999 \tanh (2.5599MIC - 0.9922D - 0.8364) \quad (13)
\]

\[
X_3 = 0.56826 \tanh (2.6430MIC + 1.19591D + 0.64889) \quad (14)
\]

\[
X_4 = 0.31372 \tanh (-2.07471MIC - 1.8803D - 2.79993) \quad (15)
\]

5. Optimized blast variable for sustainable dolomite mining

One of the most influential parameters on blast-induced effects is blast charge per delay, as noted by Armaghani et al. [46]. The proposed models were used to improve the quantity of explosive used per initiation in the case study limestone mine, thereby optimizing blast-induced effects. Minimizing the MIC and establishing the corresponding FEPA threshold limit noise and ground vibration level required determining the minimum and maximum blast effective distance from the observed blast round and utilizing the proposed models. Table 4 displays the results of applying the proposed models to reduce mine explosive use to a safe level. The MIC’s detection range was found to be between 68.46 and 147.2 dB at a distance of 0.28–1.89 mm, with a minimum detection weight of 800–1200 kg. Four blast rounds were used to verify the fragmentation result at the two threshold levels. By employing WipFrag Software, we were able to analyze the fragmentation of the proposed MIC limit for dolomite mining. As shown by the particle size distribution curve in Fig. 8 and the results in Table 5, the analysis showed that MIC = 800 Kg yielded large boulders (Fig. 10). Fig. 10 displays the results of the MIC = 1200 Kg blast, which also showed a significant number of fine materials. At 1 Km observation distance, the optimum MIC = 1100 Kg was found with the noise level and ground vibration of 120.6 dB and 1.82 mm, 92.74 dB and 1.53 m, respectively (Table 4). The proposed ANN models enabled a reduction in mine blast production and safety from an unsustainable level of ground vibration and noise to below the FEPA threshold limit.

6. Comparison of the proposed ANN model with USBM and other rule of thumb equations

The ground vibration and noise level measured from the six testing blast rounds were compared with the predicted values from the developed ANN models and other existing empirical models, including USBM and McKenzie [47]) (Eq. (16)–(7)) noise level prediction models. The peak level of ground vibration at any given point during the blast rounds was determined using USBM Eq. (18) [48].

\[
dB = 165 - (24 \times \text{Log}(D/W_d^{1/3})) \quad (16)
\]

\[
\frac{dB}{H(D/Q)^{1/3})^\beta} \quad (17)
\]

\[
PPV = K(D/W_d^{1/2})^B \quad (18)
\]

Where: \(D \) is the observation distance in m, and \(W_d \) is the maximum explosive charge in Kg, \(H = 0.515 \), \(\beta = 622 \), \(K = 1.37 \), and \(B = -0.183 \) are the site and geological constant factors, respectively. The site factors are determined by plotting the logarithmic plot of PPV versus scaled distance. The straight-line best representing the data has a negative slope \(B \)

<table>
<thead>
<tr>
<th>MIC (Kg)</th>
<th>Observation distance (m)</th>
<th>Noise level (dB)</th>
<th>Ground vibration (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 (Max)</td>
<td>1025</td>
<td>147.2</td>
<td>1.89</td>
</tr>
<tr>
<td>1100 (Optimum)</td>
<td>1000</td>
<td>120.6</td>
<td>1.82</td>
</tr>
<tr>
<td>800</td>
<td>600</td>
<td>68.46</td>
<td>0.28</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>64.06</td>
<td>0.41</td>
</tr>
<tr>
<td>800</td>
<td>1025</td>
<td>54.82</td>
<td>0.19</td>
</tr>
<tr>
<td>500</td>
<td>1000</td>
<td>34.64</td>
<td>0.06</td>
</tr>
<tr>
<td>1200</td>
<td>600</td>
<td>118.42</td>
<td>2.01</td>
</tr>
<tr>
<td>1100</td>
<td>500</td>
<td>92.74</td>
<td>1.53</td>
</tr>
</tbody>
</table>
and an intercept (Fig. 11). The USBM model was used based on the mine site geological condition and blast design as considered in Fig. 12 for the determination of the site-specific parameters.

Comparisons were made between the models developed in the proposed study (ANN) and those suggested in the literature (USBM predictor and McKenzie [47]) for the prediction of blast-induced...

Table 5. Fragmentation result after ANN optimization.

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Blast 1</th>
<th>Blast 2</th>
<th>Blast 3</th>
<th>Blast 4</th>
<th>Blast 5</th>
<th>Blast 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC = 1200 Kg</td>
<td>MIC = 1100 Kg</td>
<td>MIC = 500 Kg</td>
<td>MIC = 1200 Kg</td>
<td>MIC = 1100 Kg</td>
<td>MIC = 500 Kg</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.4</td>
<td>0.05</td>
<td>0</td>
<td>0.4</td>
<td>0.05</td>
</tr>
<tr>
<td>25</td>
<td>0.024</td>
<td>0.59</td>
<td>0.27</td>
<td>0.024</td>
<td>0.59</td>
<td>0.27</td>
</tr>
<tr>
<td>50</td>
<td>0.34</td>
<td>1.96</td>
<td>1.45</td>
<td>0.34</td>
<td>1.96</td>
<td>1.45</td>
</tr>
<tr>
<td>75</td>
<td>1.31</td>
<td>3.94</td>
<td>4.06</td>
<td>1.31</td>
<td>3.94</td>
<td>4.06</td>
</tr>
<tr>
<td>100</td>
<td>3.16</td>
<td>6.43</td>
<td>7.78</td>
<td>3.16</td>
<td>6.43</td>
<td>7.78</td>
</tr>
<tr>
<td>250</td>
<td>29.51</td>
<td>28.07</td>
<td>36.18</td>
<td>29.51</td>
<td>28.07</td>
<td>36.18</td>
</tr>
<tr>
<td>300</td>
<td>39.88</td>
<td>36.42</td>
<td>41.62</td>
<td>39.88</td>
<td>36.42</td>
<td>41.62</td>
</tr>
<tr>
<td>350</td>
<td>49.21</td>
<td>44.73</td>
<td>48.61</td>
<td>49.21</td>
<td>44.73</td>
<td>48.61</td>
</tr>
<tr>
<td>400</td>
<td>57.1762</td>
<td>52.69869</td>
<td>53.3</td>
<td>57.1762</td>
<td>52.69869</td>
<td>53.3</td>
</tr>
<tr>
<td>450</td>
<td>63.79</td>
<td>60.13</td>
<td>55.59</td>
<td>63.79</td>
<td>60.13</td>
<td>55.59</td>
</tr>
<tr>
<td>500</td>
<td>64.02</td>
<td>60.68</td>
<td>56.02</td>
<td>64.02</td>
<td>60.68</td>
<td>56.02</td>
</tr>
</tbody>
</table>

Fig. 10. Fragmentation analysis result after ANN optimization.

Fig. 11. PPV and scaled distance on log-log scale for USBM.
effects. The USBM and McKenzine [47] models have R^2 values of 0.042 and 0.051, respectively, for their predictions of the noise level, while the ANN has an R^2 value of 0.993. Compared to the two existing models, the proposed ANN model provides more accurate forecasts of blast-induced noise. On the other hand, the USBM has a low R^2 value for predicting blast-induced ground vibration (0.163), while the ANN used in the current study has a much higher value (0.985) (Fig. 13).

7. Conclusions

A wide range of environmental impacts can be caused by mining activities due to the alteration of landform that occurs during excavation. The process of fragmenting the rock mass into smaller sizes begins with blasting activities, which involve the use of explosives and blasting accessories. Explosives for blasting have other environmental consequences, such as ground vibration and noise generation, which need to be properly investigated to achieve sustainable mining. This research examined the effects of blast charges and other factors on the environment of limestone quarries. The positive correlation between limestone moisture content and strength property found in the rock strength and moisture content results [49] suggests that rock strength facilitates acid mine drainage infiltration.
both during mining and after the mine has been abandoned. Blast-induced ground vibration and noise level were found to be affected by maximum instantaneous charge and instrument measuring distance.

From the study results the following conclusions can be drawn:

1) According to the rock property analyses, the limestone has average water absorption of 8.8%, a density of 2.41 g/cm³ and a uniaxial compressive strength of 90 MPa. According to the Bieniawski rock UCS rating, the limestone in the case study is classified as strong limestone. The analysis also reveals that the formation moisture content is affected by the rock strength properties.

2) The maximum initiated explosive charge in the limestone quarry blast site ranges from 580 kg to 1600 kg, as evaluated from several blast round operations. It was deduced that the maximum explosive instantaneous charge has a directly proportional relationship with the blast after ground vibration and induced noise level.

3) The Noise level and ground vibration measured in the limestone quarry blast site using V90 seismograph ranges within, 3.5 dB to 15.8 dB and 0.25 mm/s to 3.6 mm/s respectively. It was revealed that the limestone quarry blast impact has lower values as compared with the Federal environment protection agency (FEPA) threshold limits.

4) The proposed ANN models developed have high prediction accuracy and can be used to estimate the blast-induced effect for sustainable limestone mining operations.

The authors’ future work will concentrate on predicting the blast-induced ground vibration and noise level using other Machine learning techniques and deep learning modeling techniques with additional data from other mines to widen the model application in other industrial rock extraction projects.

Ethical statement
Authors state that the research was conducted according to ethical standards.

Funding body
This research received no external funding.

Conflicts of interest
The authors declare no conflict of interest.

Acknowledgements
None.

References
[48] Tiile RN. Artificial neural network approach to predict blast-induced ground vibration, airblast and rock fragmentation. Missouri University of Science and Technology; 2016.