Author ORCID Identifier

Phu Minh Vuong Nguyen: 0000-0002-4895-8811

Andrzej Walentek: 0000-0003-1238-4921

Petr Waclawik: 0000-0002-9589-5083

Kamil Soucek: 0000-0002-4430-8272


In the last decades, numerical modelling has been widely used to simulate rock mass behaviour in geo-engineering issues. The only disadvantage of numerical modelling is the reliability of required input data (e.g. mechanical parameters), which is not always fully provided due to the complexity of rock mass, project budget, available test methods or human errors. On the other hand, it was proven in many cases that numerical modelling is a helpful tool for solving such complex problems, especially when coupled with the results of laboratory and in-situ tests. This paper presents an attempt to determine the proper numerical constitutive model of rock and its mechanical parameters for further simulating rock mass response based on the outcomes of laboratory testing. For this purpose, the available constitutive models, including mechanical parameters, were taken into account. The simulation performance with the selected constitutive models is demonstrated by matching the numerical modelling results with the uniaxial compressive strength laboratory tests of rock samples from the Bogdanka coal mine. All numerical simulations were carried out using the finite difference method software FLAC3D

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.