Abstract
The Mathews stability graph method was presented for the first time in 1980. This method was developed to assess the stability of open stopes in different underground conditions, and it has an impact on evaluating the safety of underground excavations. With the development of technology and growing experience in applying computer sciences in various research disciplines, mining engineering could significantly benefit by using Machine Learning. Applying those ML algorithms to predict the stability of open stopes in underground excavations is a new approach that could replace the original graph method and should be investigated. In this research, a Potvin database that consisted of 176 historical case studies was passed to the two most popular Machine Learning algorithms: Logistic Regression and Random Forest, to compare their predicting capabilities. The results obtained showed that those algorithms can indicate the stability of underground openings, especially Random Forest, which, in examined data, performed slightly better than Logistic Regression.
Recommended Citation
Szmigiel, Alicja and Apel, Derek B.
(2022)
"Predicting the stability of open stopes using Machine Learning,"
Journal of Sustainable Mining: Vol. 21
:
Iss.
3
, Article 7.
Available at: https://doi.org/10.46873/2300-3960.1369
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.